Analysis of synthetic flames

Stephanie A. Coronel^a, Rémy Mével^{a,b,c}, and Joseph E. Shepherd^a

^aCalifornia Institute of Technology, Pasadena, CA ^bCenter for Combustion Energy, ^cSchool of Vehicle and Mobility, Tsinghua University, Beijing, China

> 27th ICDERS Beijing, China July 28 - August 2, 2019

Introduction

Methodology

Results & Discussion

Conclusions

Laminar Flame Speed

Definition

The normal propagation velocity of fresh gas relative to a fixed, planar flame front

A measure of the mixture reactivity and diffusivity An important fundamental parameter

- Turbulent combustion models
- Multi-zone internal combustion engine model
- Reaction model development
- Reaction model validation

Typical results

Significant improvement since ~2000

Discrepancies remain

Spherically expanding flame (SEF) is widely used Enables access to high pressure conditions

Typical experimental set-up at ICARE-Orleans

6/34

SEF Experiments (2/5)

H₂-air mixture. $\Phi = 2$; P = 82.4 kPa; T = 296 K

SEF experiments (3/5)

Flame radius measurement (in-house code from ICARE-Orleans)

Extrapolation to zero-stretch rate

Perturbations for SEF experiments (Lipatnikov et al.)

- i. Spark ignition energy (small radii)
- ii. Confinement effects (large radii)
- iii. Heat losses through radiation (large radii)
- iv. Product density non-uniformity (small radii)
- v. Compression effects (large radii)
- vi. Flame instabilities (large radii)
- vii. Stretch effects (all radii)

Focus on the effect of extrapolation method

Extrapolation Models

- Linear stretch (LS): $S_b = S_b^0 L_B \kappa$
- Linear curvature (LC): $S_b = S_b^0 2S_b^0 L_B/R_f$
- Nonlinear quasi-steady (NQ): $\ln (S_b) = \ln (S_b^0) 2S_b^0 L_B / (R_f S_b)$
- Finite thickness expression (FTE):

$$\left(S_b/S_b^0 + 2\delta^0/R_f\right) \ln\left(S_b/S_b^0 + 2\delta^0/R_f\right) = -2\left(L_B - \delta^0\right)/R_f$$

• Taylor expansion of nonlinear model (NE) about L_B/R_f :

$$S_b/S_b^0 \left(1 + 2L_B/R_f + 4L_B^2/R_f^2 + 16L_B^3/3R_f^3 + \dots \right) = 1$$

• Nonlinear model with 3 fitting parameters (N3P):

$$S_b/S_b^0 = 1 - L_B/R_f + C/R_f^2$$

Extrapolation Behavior

How are extrapolation results affected by data set characteristics?

• Range of flame radii, radius upper and lower bounds, number of points in data set, noise in data, etc.

Huo et al. 2018

- Error = $7.5x^2 - 0.35x + 0.007$ $x = L_{B,LC}/R_{f,new}$ $R_{f,new} = \frac{R_{f,L}R_{f,U}\sqrt{s^2 + 1}}{-sR_{f,L} + R_{f,U}}$ s = -1.72
- Error less than 2% when $L_B/R_{f,{\rm new}} < 0.06$
- At least 30 points recommended for extrapolation

Jayachandra et al. 2015

Error values represented by symbols: (X) linear method for S_{b} ; (\Box) non-linear method for S_{b} ; and (Δ) non-linear method for U_{a} .

• Relative error decreased when increasing flame radius range: $10 \le R_f \le 20 \text{ mm to}$ $10 \le R_f \le 60 \text{ mm}$

Halter et al. 2010

- Comparison of linear and nonlinear methodologies
- CH_4/air , iso-octane/ air (P = 100 kPa,
 - T = 300 and 400 K)
- For $\Phi = 0.8$, the relative difference between the two model results is reduced to 1% from 10% when increasing the initial radius from 8 mm to 20 mm

- Extrapolation results are affected by the flame radius range and data set size
- A systematic study on effect of data set size has not been performed (experimentally or numerically)
- Nonlinear model is accurate for mixtures with small Lewis number
- Linear curvature model is accurate for mixtures with large Lewis number
- Models can lead to large errors away from stoichiometric conditions

Objective

- Systematically evaluate nonlinear model by varying data range and size, and noise levels
- Evaluate relative differences between linear and nonlinear models

Approach

- Generate synthetic data through integration of nonlinear expression
 - Experimental data generation is expensive and time consuming
 - Numerical simulations can be computational expensive
- Introduce noise to simulate experimental environment
- Assess recovery of flame parameters by quantifying uncertainty and standard deviation

Introduction

Methodology

Results & Discussion

Conclusions

Extrapolation models (recall)

• Linear stretch:

$$S_b = S_b^0 - L_B \kappa$$

• Nonlinear quasi-steady:

$$\ln\left(S_b\right) = \ln\left(S_b^0\right) - 2S_b^0 \frac{L_B}{R_f S_b}$$

Definitions

• R_f : flame radius; $\kappa = 2S_b/R_f$: stretch rate; S_b : $\mathrm{d}R_f/\mathrm{d}t$

	Synthetic	Experimental
Range	$R_{f} = [R_{f,L}, R_{f,U}]$ 1% noise; $R_{f,L} = 10 \text{ mm}$ $R_{f,U} = \{25, 38, 58, 70\} \text{ mm}$	$R_{f,N}$: combustion vessel windows and flame instabilities; $R_{f,L}$: initial energy deposition
Size	$ R_f = \{10, 20, 50, 100\}$ $R_{f,L} = 10$ mm; $R_{f,U} = 58$ mm; 1% noise	Camera framing rate; mixture composition; initial energy deposition
Noise	Gaussian: $1, 3, 5, 10\%$ $R_{f,L} = 10$ mm; $R_{f,U} = 58$ mm; $ R_f = 100$	Camera resolution; flame sphericity; flame detection algorithm; flame instabilities

Data Generation

• Numerically integrate (ode15i) equation below to obtain $R_{f}\left(t\right)$ for values of S_{b}^{0} and L_{B}

$$\frac{1}{S_b^0} \frac{\mathrm{d}R_f}{\mathrm{d}t} \ln\left(\frac{1}{S_b^0} \frac{\mathrm{d}R_f}{\mathrm{d}t}\right) = -2\frac{L_B}{R_f}$$

- Add different levels of Gaussian noise to synthetic $R_{f}\left(t
 ight)$
- R_f will have size $|R_f|$, lower bound $R_{f,L}$, and upper bound $R_{f,U}$

 $|R_f| = 100, [R_{f,L}, R_{f,U}] = [10, 58] \text{ mm}, 1\%$ noise

Experimental flame radius: n-hexane/air

Steps to Solve for S_b^0 and L_B (1/2)

1. Use synthetic $R_{f}\left(t\right)$ in analytic solution of linear model to find S_{b}^{0} and L_{B}

$$S_b = S_b^0 - L_B \kappa \rightarrow \frac{\mathrm{d}R_f}{\mathrm{d}t} = S_b^0 - 2\frac{L_B}{R_f}\frac{\mathrm{d}R_f}{\mathrm{d}t}$$
$$\boldsymbol{S_b^0} \left(t - t_U\right) = R_f - R_{f,U} + 2\boldsymbol{L_B}\ln\left(\frac{R_f}{R_{f,U}}\right) + C$$

2. Solutions of linear model, $S_{b,guess}^0$ and $L_{B,guess}$, used as initial guesses in nonlinear model

$$\frac{1}{S_{b,\text{guess}}^{0}}\frac{\mathrm{d}R_{f}}{\mathrm{d}t}\ln\left(\frac{1}{S_{b,\text{guess}}^{0}}\frac{\mathrm{d}R_{f}}{\mathrm{d}t}\right) = -2\frac{L_{B,\text{guess}}}{R_{f}}$$

3. Integration of nonlinear differential equation yields new values of $R_{f}\left(t
ight):R_{f}^{\mathrm{trial}}$

4. Objective function calculated

$$z = \sum_{i=0}^{N} \left[R_f - R_f^{\text{trial}} \right]^2$$

where i corresponds to the ith data point and N is the size of R_f
5. L_B and S⁰_b are iteratively refined by minimizing the objective function using the Levenberg-Maarquardt minimization algorithm

Uncertainty

• Jacobian

$$J_{ik}^2 = \frac{\partial^2 r_i}{\partial a_k^2} \text{ where } r_i = R_{f,i} - R_{f,i}^{\text{trial}} \text{ and } a_k = \{L_B, S_b^0\}$$

$$\Delta a_k = \left[3\sum_{i}^{N} \Delta R_{f,i}^2 / \sum_{i} J_{ik}^2\right]^{1/2}$$

• $\Delta R_{f,i}$: uncertainty in the *i*th point; $\Delta a_k = \{\Delta L_B, \Delta S_b^0\}$

Introduction

Methodology

Results & Discussion

Conclusions

Performance of Levenberg-Maarquardt minimization algorithm

• Synthetic data generated for $S_b^0 = 2.5 \text{ m/s}$ and $L_B = -1 \text{ mm}$ (no added noise) using nonlinear model

• Elongated contours characteristic of linear and nonlinear expressions

Evaluation of L_B

How much is L_B affected by noise?

- Global minimum at the correct solution; shallower minimum as noise increases
- Shifted to more negative Markstein lengths as noise increases (not the case for 3%)
- Minimum error behavior is consistent across different types of noise (e.g. uniform noise and noise that decreases with increasing flame radius)

Effect of Size on S_b^0 : $S_b^0 \in [0.3, 35]$ m/s; $L_B = \{-5.0, -1.0, 1.0, 1.7\}$ mm

 $R_{f,L} = 10$ mm, $R_{f,U} = 58$ mm, $|R_f| = \{10, 20, 50, 100\}$; 1% Gaussian noise

- 10 points: incorrect S_b^0 calculation in the range $S_b^0 \in [18,35] \ {\rm m/s}$
- 100 points: correct S_b^0 calculation (within the uncertainty) over entire S_b^0 range
- ~50 points: correct S_b^0 calculation for $L_b = \{-5.0, -1.0, 1.0, 1.7\}$ mm

Effect of Size on L_B : $S_b^0 = \{0.3, 17.6, 35.0\}$ m/s; $L_B \in [-5.0, 1.7]$ mm

 $R_{f,L} = 10$ mm, $R_{f,U} = 58$ mm, $|R_f| = \{10, 20, 50, 100\}$; 1% Gaussian noise

- 10 points: incorrect L_B calculation in the range $L_B \in [-5, -1] \text{ mm}$
- 100 points: correct L_B calculation (within the uncertainty) over entire L_B range
- ~50 points: correct L_B calculation for $S_b^0 = \{0.3, 17.6, 35.0\}$ m/s

Effect of Range on S_b^0 : $S_b^0 \in [0.3, 35]$ m/s; $L_B = \{-5.0, -1.0, 1.0, 1.7\}$ mm

 $R_{f,L} = 10$ mm, $R_{f,U} = \{25, 38, 58, 70\}$ mm, $|R_f| = 100$; 1% Gaussian noise

- $R_{f,U} = 25$ mm: incorrect S_b^0 calculation in the range $S_b^0 \in [8, 35]$ m/s
- $R_{f,U} = 70$ mm: correct S_b^0 calculation (within the uncertainty) over entire S_b^0 range
- $\sim R_{f,U} = 38$ mm: correct S_b^0 calculation for $L_b = \{-5.0, -1.0, 1.0, 1.7\}$ mm

Effect of Range on L_B : $S_b^0 = \{0.3, 17.6, 35.0\}$ m/s; $L_B \in [-5.0, 1.7]$ mm

 $R_{f,L} = 10$ mm, $R_{f,U} = \{25, 38, 58, 70\}$ mm, $|R_f| = 100$; 1% Gaussian noise

- $R_{f,U} = 25$ mm: incorrect L_B calculation in the range $L_B \in [-5,0]$ mm
- $R_{f,U} = 70$ mm: correct L_B calculation (within the uncertainty) over entire L_B range
- $\sim R_{f,U} = 58$ mm: correct L_B calculation for $S_b^0 = \{0.3, 17.6, 35.0\}$ m/s

30/34

= [10, 58] mm

Effect of Noise

$R_{f,L} = 10$ mm, $R_{f,U} = 58$ mm, $|R_f| = 100$; 1, 3, 5, 10% Gaussian noise

Introduction

Methodology

Results & Discussion

Conclusions

- The objective function exhibits a shallow minimum that depends only weakly on the Markstein length
- When noise is added to the synthetic data, the local minimum in the objective function becomes shallower
- To determine the flame speed and Markstein length with accuracy and minimize the uncertainty, the present results indicate that the experiments should result in data with a large number of points (> 50), a large flame radius range (> 58 mm), and low noise

Thank you

