Experimental *n*-Hexane-Air Expanding Spherical Flames

Stephanie A. Coronel^{a,\dagger}, Simon Lapointe^{a,\ddagger}, Rémy Mével^{a,b,c}, Nabiha Chaumeix^d, and Joseph E. Shepherd^a

^aCalifornia Institute of Technology, Pasadena, CA, USA ^bCenter for Combustion Energy, ^cSchool of Vehicle and Mobility, Tsinghua University, Beijing, China ^dICARE, CNRS-INSIS, Orléans, France

27th ICDERS Beijing, China July 28 - August 2, 2019

Present address: [†]Sandia National Laboratories; [‡]Lawrence Livermore National Laboratory

Introduction

Methodology

Results & Discussion

Summary & Conclusions

Thermal Ignition Hazards

Motivation: understand thermal ignition hazards present in the aviation, nuclear, mining, and manufacturing sectors.

Frictional sparks and hot spots[†]

TWA flight 800, 1996

Previous work: extensive work has been performed at Caltech in the context of aviation safety using *n*-hexane as a surrogate for kerosene.

China Air flight 120, 2007

3/25

Laminar Flame Properties

Why study flame properties?

- Development of clean combustion technologies
- Development of cleaner alternative fuels
- Goals motivate the development and validation of **chemical reaction mechanisms**
 - Turbulent combustion models
 - Multi-zone internal combustion engine model

n-Hexane

Why study *n*-hexane?

- Ease of use in laboratory environment (high vapor pressure)
- "Simple" single component surrogate for kerosene based fuels
- Limited number of studies

Farrell et al. (2004)

Ji et al. (2010)

Pressure conditions ≥ 100 kPa

Ref.	P_0 (kPa)	T_0 (K)	Φ	N
[1]	100	300	0.85 - 1.70	16
[2]	304	450	0.55 - 1.30	9
[3]	100	353	0.75 - 1.70	19
[3]	100 - 1000	353	0.9	4
[4]	100	353	0.75 - 1.50	10

• Experiments at pressure conditions of ≤ 100 kPa, relevant to conditions in aircraft fuel tanks, have not been performed

Objective

• Obtain laminar flame properties at sub-atmospheric conditions ($P_0 \le 100 \text{ kPa}$)

Effect	P_0 (kPa)	T_0 (K)	Φ	N
Pressure	40 - 100	357	0.9	4
Temperature	50	296 - 423	0.9, 1.1, 1.4	15
Composition	100	296	0.76 - 1.42	7
	50	296	0.86 - 1.90	12

Approach

- Perform spherically expanding flame experiments
- Use nonlinear extrapolation methodology to extract flame properties
- Compare experimental results with several chemical kinetic mechanisms

Introduction

Methodology

Results & Discussion

Summary & Conclusions

Experimental Setup

Spherically expanding flame experimental setups

GALCIT

ICARE

Extracting Flame Radii

Flame radius extraction software developed at ICARE

- Apply mask: removes background (electrodes)
- Edge detection operator: Canny
- Fit detected edge: ellipse
- Ellipse: obtain equivalent flame radius R_f

10/25

Extracting Flame Parameters

• LS:
$$S_b = S_b^0 - L_B \kappa$$

• LC:
$$S_b = S_b^0 - 2S_b^0 L_B / R_f$$

- NQ: $\ln(S_b) = \ln(S_b^0) 2S_b^0 L_B / (R_f S_b)$
- FTE: $(S_b/S_b^0 + 2\delta^0/R_f) \ln (S_b/S_b^0 + 2\delta^0/R_f) = -2 (L_B - \delta^0)/R_f$ • NE: $S_b/S_b^0 (1 + 2L_B/R_f + 4L_B^2/R_f^2 + 16L_B^3/3R_f^3 + ...) = 1$
- N3P: $S_b/S_b^0 = 1 L_B/R_f + C/R_f^2$

- $\kappa = 2S_b/R_f$: stretch rate $S_b = \mathrm{d}R_f/\mathrm{d}t$: unstretched flame speed δ^0 : flame thickness
- L_b : Markstein length

Implementation of Nonlinear Methodology (1/2)

1. Use measured $R_{f}\left(t
ight)$ in analytic solution of linear model to find S_{b}^{0} and L_{B}

$$S_b = S_b^0 - L_B \kappa \rightarrow \frac{\mathrm{d}R_f}{\mathrm{d}t} = S_b^0 - 2\frac{L_B}{R_f}\frac{\mathrm{d}R_f}{\mathrm{d}t}$$
$$\boldsymbol{S_b^0} \left(t - t_U\right) = R_f - R_{f,U} + 2\boldsymbol{L_B}\ln\left(\frac{R_f}{R_{f,U}}\right) + C$$

2. Solutions of linear model, $S_{b,guess}^0$ and $L_{B,guess}$, used as initial guesses in nonlinear model

$$\frac{1}{S_{b,\text{guess}}^0} \frac{\mathrm{d}R_f}{\mathrm{d}t} \ln\left(\frac{1}{S_{b,\text{guess}}^0} \frac{\mathrm{d}R_f}{\mathrm{d}t}\right) = -2\frac{L_{B,\text{guess}}}{R_f}$$

3. Integration of nonlinear differential equation yields new values of $R_{f}\left(t
ight):R_{f}^{\mathrm{trial}}$

4. Objective function calculated

$$z = \sum_{i=0}^{N} \left[R_f - R_f^{\text{trial}} \right]^2$$

where i corresponds to the i^{th} data point and N is the size of R_f

- 5. L_B and S_b^0 are iteratively refined by minimizing the objective function using the Levenberg-Maarquardt minimization algorithm
- 6. Calculate S_u^0 through expansion ratio: $S_u^0=S_b^0/\sigma$ where $\sigma=\rho_u/\rho_b$

1-D freely propagating flame calculations using FlameMaster

- Neglect Soret and Dufour effect
 - Xin et al. (2012): 1-2% increase in S^0_u when accounting for Soret effect in $n\mbox{-heptane-air}$
 - Bongers and Goey (2003): Dufour effect negligible in C_3 laminar premixed flames
- Mixture-averaged formulation for the transport properties
 - Ji et al. (2010): 1 cm/s increase in S^0_u of C_5-C_{12} flames

Chemical kinetic mechanisms

- CaltechMech: 172 species and 1,119 reactions; importance on modeling of formation of soot precursors for fuel surrogates
- JetSurF: 348 species and 2,163 reactions
- Mével: $531 \ {\rm species} \ {\rm and} \ 2,628 \ {\rm reactions}; \ {\rm validated} \ {\rm for} \ {\rm ignition} \ {\rm delay} \ {\rm time}$

Introduction

Methodology

Results & Discussion

Summary & Conclusions

Comparison with previous work

 A Mann-Whitney-Wilcoxon (MWW) RankSum test indicates that differences are not statistically significant

Comparison of flame parameters at 50 kPa and 100 kPa

• The MWW RankSum test indicates that the differences in S_u^0 at 100 kPa and 50 kPa are not statistically significant

Flame parameters at 40 - 1000 kPa and 353 and 357 K

- S_u^0 decreases 20% between 50 and 100 kPa
- S_u^0 decreases 53% between 50 and 1000 kPa
- Power law: $S^0_u(P) = 128 \times P^{-0.24}$

(P has units of kPa)

standard deviations for the pre-exponential and exponent are 12 and 0.02, respectively

Temperature Effect on S_u^0

Flame parameters at 50 kPa and 296 - 422 K

- From 296 K to 422 K, S_u^0 increases by approximately 93%, 82%, and 94% for $\Phi = 0.90, 1.10$, and 1.40, respectively
- Profiles can be fit to power law, $S_u^0 \sim T^2$, shown below

19/25

Flame parameters at 50 kPa and $\Phi = 0.86 - 1.90$

- Lean and rich mixtures exhibit positive and negative Markstein lengths
- The transition from positive to negative L_B occurs at $\Phi = 1.3$
- Deviations of the nonlinear and linear L_B occur for both rich and lean conditions

Markstein Length (2/2)

Flame parameters at 50 kPa and $\Phi = 0.86 - 1.90$

- Ma_{linear} : Markstein number (linear method); Ka_{mid} : Karlovitz number (evaluated at mid-point of flame radii profiles)
- $Ma_{linear}Ka_{mid}$ suggested by Wu et al. (2015) to evaluate extrapolation errors
- Blue, green, and red: $\leq 5\%$, 5-12%, and 5-40%
- Points in red region: rich conditions (strong flame instabilities)

Root-mean-squared error (RMSE)

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(S_{\text{calc}}^{(i)} - S_{\text{exp}}^{(i)} \right)^2}$$

where N is the number of tests and i is the i^{th} test

 Mean RMSE: 5.0 cm/s (CaltechMech), 2.8 cm/s (JetSurF), and 9.0 cm/s (Mével) Introduction

Methodology

Results & Discussion

Summary & Conclusions

- n-Hexane-air mixtures characterized through experimental measurements and calculations of the laminar burning speed
- The laminar burning speed was obtained by using a nonlinear methodology
- The laminar burning speed was observed to increase as pressure decreases ($T_0 = 357$ K) and as temperature increases
- Laminar burning speed increases at comparable rates as temperature increases for mixtures $\Phi=0.90, 1.10, 1.40$
- The predictive capabilities of three chemical kinetic mechanisms was quantified using RMSE
- JetSurF yielded the lowest mean RMSE across a wide range of experimental conditions

Thank you

