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Thermal Ignition Hazards

Motivation: understand thermal ignition hazards present in the
aviation, nuclear, mining, and manufacturing sectors.

Frictional sparks and hot spots† China Air flight 120, 2007 TWA flight 800, 1996

Previous work: extensive work has been performed at Caltech in the
context of aviation safety using n-hexane as a surrogate for kerosene.
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Laminar Flame Properties

Why study flame properties?

• Development of clean combustion technologies
• Development of cleaner alternative fuels
• Goals motivate the development and validation of chemical
reaction mechanisms

• Turbulent combustion models
• Multi-zone internal combustion engine model
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n-Hexane

Why study n-hexane?

• Ease of use in
laboratory
environment (high
vapor pressure)

• “Simple” single
component
surrogate for
kerosene based
fuels

• Limited number
of studies

Davis and Law (1998) Farrell et al. (2004)

Kelley et al. (2010) Ji et al. (2010)

5/25



n-Hexane Previous Studies

Pressure conditions ≥ 100 kPa

Ref. P0 (kPa) T0 (K) Φ N
[1] 100 300 0.85− 1.70 16
[2] 304 450 0.55− 1.30 9
[3] 100 353 0.75− 1.70 19
[3] 100− 1000 353 0.9 4
[4] 100 353 0.75− 1.50 10

• Experiments at pressure conditions of
≤ 100 kPa, relevant to conditions in
aircraft fuel tanks, have not been
performed
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Objective of Present Study

Objective
• Obtain laminar flame properties at sub-atmospheric conditions
(P0 ≤ 100 kPa)

Effect P0 (kPa) T0 (K) Φ N
Pressure 40− 100 357 0.9 4

Temperature 50 296− 423 0.9, 1.1, 1.4 15
Composition 100 296 0.76− 1.42 7

50 296 0.86− 1.90 12
Approach

• Perform spherically expanding flame experiments
• Use nonlinear extrapolation methodology to extract flame
properties

• Compare experimental results with several chemical kinetic
mechanisms
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Experimental Setup

Spherically expanding flame experimental setups
GALCIT ICARE

22 L cylindrical 56 L spherical
10, 000 fps (Phantom v711) 25, 000 fps (Phantom v1610)

512× 512 px2 768× 768 px2
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Extracting Flame Radii

Flame radius extraction software developed at ICARE
• Apply mask: removes background (electrodes)
• Edge detection operator: Canny
• Fit detected edge: ellipse
• Ellipse: obtain equivalent flame radius Rf
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Extracting Flame Parameters

• LS: Sb = S0
b − LBκ

• LC: Sb = S0
b − 2S0

bLB/Rf

• NQ: ln (Sb) = ln (S0
b )− 2S0

bLB/ (RfSb)
• FTE:

(Sb/S
0
b + 2δ0/Rf ) ln (Sb/S

0
b + 2δ0/Rf ) = −2 (LB − δ0) /Rf

• NE: Sb/S
0
b

(
1 + 2LB/Rf + 4L2

B/R
2
f + 16L3

B/3R3
f + ...

)
= 1

• N3P: Sb/S
0
b = 1− LB/Rf + C/R2

f
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Calculation

κ = 2Sb/Rf : stretch rate
Sb = dRf/dt : unstretched flame speed
δ0 : flame thickness
Lb : Markstein length
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Implementation of Nonlinear Methodology (1/2)

1. Use measured Rf (t) in analytic solution of linear model to find
S0

b and LB

Sb = S0
b − LBκ→

dRf

dt = S0
b − 2LB

Rf

dRf

dt

S0
b (t− tU) = Rf −Rf,U + 2LB ln

(
Rf

Rf,U

)
+ C

2. Solutions of linear model, S0
b,guess and LB,guess, used as initial

guesses in nonlinear model

1
S0

b,guess

dRf

dt ln
(

1
S0

b,guess

dRf

dt

)
= −2LB,guess

Rf

3. Integration of nonlinear differential equation yields new values of
Rf (t) : Rtrial

f
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Implementation of Nonlinear Methodology (2/2)

4. Objective function calculated

z =
N∑

i=0

[
Rf −Rtrial

f

]2
where i corresponds to the ith data point and N is the size of Rf

5. LB and S0
b are iteratively refined by minimizing the objective

function using the Levenberg-Maarquardt minimization algorithm
6. Calculate S0

u through expansion ratio: S0
u = S0

b /σ where
σ = ρu/ρb
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Laminar Burning Speed Modeling

1-D freely propagating flame calculations using FlameMaster
• Neglect Soret and Dufour effect

• Xin et al. (2012): 1− 2% increase in S0
u when accounting for

Soret effect in n-heptane-air
• Bongers and Goey (2003): Dufour effect negligible in C3
laminar premixed flames

• Mixture-averaged formulation for the transport properties
• Ji et al. (2010): 1 cm/s increase in S0

u of C5−C12 flames
Chemical kinetic mechanisms

• CaltechMech: 172 species and 1, 119 reactions; importance on
modeling of formation of soot precursors for fuel surrogates

• JetSurF: 348 species and 2, 163 reactions
• Mével: 531 species and 2, 628 reactions; validated for ignition
delay time
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Atmospheric Conditions

Comparison with previous work
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• A Mann-Whitney-Wilcoxon
(MWW) RankSum test
indicates that differences are
not statistically significant
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Sub-Atmospheric Conditions

Comparison of flame parameters at 50 kPa and 100 kPa
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• The MWW RankSum test
indicates that the differences
in S0

u at 100 kPa and 50 kPa
are not statistically significant
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Pressure Effect on S0
u

Flame parameters at 40− 1000 kPa and 353 and 357 K
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• S0
u decreases 20% between 50

and 100 kPa
• S0

u decreases 53% between 50
and 1000 kPa

• Power law:
S0

u(P ) = 128× P−0.24

(P has units of kPa)
standard deviations for the
pre-exponential and exponent
are 12 and 0.02, respectively
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Temperature Effect on S0
u

Flame parameters at 50 kPa and 296− 422 K
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• From 296 K to 422 K, S0
u increases

by approximately 93%, 82%, and
94% for Φ = 0.90, 1.10, and,1.40,
respectively

• Profiles can be fit to power law,
S0

u ∼ T 2, shown below
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Markstein Length (1/2)

Flame parameters at 50 kPa and Φ = 0.86− 1.90
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• Lean and rich mixtures
exhibit positive and negative
Markstein lengths

• The transition from positive
to negative LB occurs at
Φ = 1.3

• Deviations of the nonlinear
and linear LB occur for both
rich and lean conditions
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Markstein Length (2/2)

Flame parameters at 50 kPa and Φ = 0.86− 1.90
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• Malinear : Markstein number
(linear method); Kamid :
Karlovitz number (evaluated
at mid-point of flame radii
profiles)

• MalinearKamid suggested by
Wu et al. (2015) to evaluate
extrapolation errors

• Blue, green, and red: ≤ 5%,
5− 12%, and 5− 40%

• Points in red region: rich
conditions (strong flame
instabilities)
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Evaluation of Chemical Kinetic Mechanisms

Root-mean-squared error (RMSE)

RMSE =

√√√√ 1
N

N∑
i=1

(
S

(i)
calc − S

(i)
exp
)2

where N is the number of tests and i is the ith test

CaltechMech JetSurF Mével
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P = 100 kPa, T = 300 K (Davis and Law)

P = 100 kPa, T = 353 K (Ji et al.)

P = 100 kPa, T = 353 K (Kelley et al.)

P = 50 kPa, T = 300 K

P = 50 kPa, Φ = 0.9

P = 50 kPa, Φ = 1.1

P = 50 kPa, Φ = 1.4

T = 353 K, Φ = 0.9

T = 353 K, Φ = 0.9 (Kelley et al.)

• Mean RMSE: 5.0 cm/s (CaltechMech), 2.8 cm/s (JetSurF), and
9.0 cm/s (Mével)
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Summary & Conclusions

• n-Hexane-air mixtures characterized through experimental
measurements and calculations of the laminar burning speed

• The laminar burning speed was obtained by using a nonlinear
methodology

• The laminar burning speed was observed to increase as pressure
decreases (T0 = 357 K) and as temperature increases

• Laminar burning speed increases at comparable rates as
temperature increases for mixtures Φ = 0.90, 1.10, 1.40

• The predictive capabilities of three chemical kinetic mechanisms
was quantified using RMSE

• JetSurF yielded the lowest mean RMSE across a wide range of
experimental conditions
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