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Spark Ignition and                                        
Minimum Ignition Energy 
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•  Risk of accidental ignition in 
industry and aviation  

•  Minimum Ignition Energy (MIE): 
traditional basis for quantifying 
ignition hazards 

•  Capacitive spark discharge as 
ignition source 

•  Pioneering work – Blanc, Guest, 
Lewis & von Elbe at Bureau of 
Mines (1940s) 

MIE curves for hydrogen mixtures, 
Lewis and von Elbe (1961) 
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Statistical Analysis                                        
of Ignition Test Data 
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•  New viewpoint – ignition as statistical phenomenon 

•  More consistent with test data 

•  Little work done on statistics of ignition of other flammable mixtures 

•  Can�t assign a probability to historical MIE data 

Stoichiometric Methane-Air  
Kono and Tsue (2009) 

Jet A,  Lee and Shepherd (1999) 
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Spark Breakdown and Spark                       
Channel Formation 
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Unpredictable Plasma Instabilities 

Localized Ignition 



•  Liquid fuel composition usually not known for 
commercial fuels ! several 100 components 

•  composition changes from batch to batch, can 
be affected by history, transport, etc. 

•  composition of liquid not the same as fuel vapor 
Gas chromatograph (Woodrow, 2000) 

Kerosene Tests:                                    
Experimental Considerations 
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Ignition hazard in aircraft is 
due to much more complex 

fuels, that is a kerosene-
based fuel 

•  Ignition testing: low vapor pressure  
must heat significantly or decrease 
pressure 

•  vapor pressure depends on many 
variables 

Fuel vapor pressure vs. temperature and fuel 
mass loading (Lee and Shepherd, 1999) 



Experimental Setup 
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22 L, stainless steel, cylindrical combustion vessel 

"    Ignition Detection 

"    Schlieren visualization 

"    Vessel Heating System 

•   flame visualization 

•   pressure transducer 

•   thermocouple 

•  high-speed camera (10,000+ 
frames per second) 

•   silicone heaters, 4 zones 

•   high-current heater control unit 

•   up to ~ 150°C 



Results:  Kerosene Ignition 
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•   1-K kerosene at 45-62°C, 100 kPa 

•   fixed 3.3 mm spark gap 

•   50 kg/m3 fuel mass loading 

•   C ~ 11 – 68 pF, V ~ 6.4 – 11.4 kV  !  Espark ~ 0.3 – 2.3 mJ 

kerosene-air, 45°C kerosene-air, 55°C 
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kerosene-air, 45°C 
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kerosene-air, 50°C 
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kerosene-air, 55°C 



Results:  Kerosene-Air at 60°C 
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Previous Work              
(Lee and Shepherd): 
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Results:  Kerosene-Air at 60°C 
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Results:  Comparison with Hexane 
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Results:  Comparison with H2 
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•  Energy/length 
used to account for 
different length 
sparks  

• Normalize spark 
energies from 5%  
and 7% H2 tests by 
spark gap widths 
used (2 and 1 mm) 

•  Normalize spark 
energies from 
kerosene tests by 
3.3 mm 



Results:  Varying Kerosene                       
            Fuel Temperature 
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Parametric Study 
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•  Ignition energy model 

•  Mixture composition is required 

•  Raoult’s Law 

liquid composition 

saturation pressure 

•  Obtain Xi through a distillation curve 
or gas chromatography 

Gas chromatograph (Woodrow, 2000) 



Parametric Study 

•  Raoult’s law does not take into consideration the fuel mass loading 

•  “headspace equation” ! conservation of moles 

•  K is the hydrocarbon liquid-vapor distribution coefficient  
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initial liquid 
composition 

fuel vapor 
composition 



Parametric Study Results 
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•  Effect of fuel mass loading on pressure for a kerosene-based fuel 



Parametric Study Results 
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•  for low fuel mass loadings, the lighter 
hydrocarbons become depleted 

•  fuel vapor pressure is always an 
increasing function of fuel 
temperature 

•  As the flash point increases, the 
lighter hydrocarbons are fewer  
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Conclusions 
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•  Electrostatic spark ignition tests using 
kerosene over a range of temperatures at 
atmospheric pressure. 

•  Statistical analysis of probability of ignition vs. 
spark energy density at 60°C 

•  Kerosene-air mixture has a lower ignition 
energy at 60°C than H2-O2-Ar mixture 
previously used in aircraft certification (5% H2)  

•  Model to obtain fuel vapor composition given 
changes in flash point, temperature, pressure 
and fuel mass loading 

•  From vapor composition predictions, lighter 
mass hydrocarbons are more appropriate for 
low temperature fuel vapor surrogates.  

#  The experimental work was carried out in the Explosion Dynamics Laboratory of the 
California Institute of Technology and was supported by the Boeing Company through a 
Strategic Research and Development Relationship Agreement CT-BA-GTA-1 
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