Statistical Analysis of Spark Ignition of Kerosene-Air Mixtures

S. A Coronel¹, S. P. M. Bane², P. A. Boettcher¹ and J. E. Shepherd¹

¹California Institute of Technology, ²Purdue University

Fall Technical Meeting of the Western States Section of the Combustion Institute

University of California, Riverside, CA Oct 17-18, 2011

Spark Ignition and Minimum Ignition Energy

- Risk of accidental ignition in industry and aviation
- Minimum Ignition Energy (MIE): traditional basis for quantifying ignition hazards
- Capacitive spark discharge as ignition source
- Pioneering work Blanc, Guest, Lewis & von Elbe at Bureau of Mines (1940s)

MIE curves for hydrogen mixtures, Lewis and von Elbe (1961)

Statistical Analysis of Ignition Test Data

- *New viewpoint* ignition as <u>statistical</u> phenomenon
- More consistent with test data
- Little work done on statistics of ignition of other flammable mixtures
- Can't assign a probability to historical MIE data

Spark Breakdown and Spark Channel Formation

Unpredictable Plasma Instabilities

Localized Ignition

Kerosene Tests: Experimental Considerations

Ignition hazard in aircraft is due to much more complex fuels, that is a kerosenebased fuel

- Ignition testing: low vapor pressure must heat significantly or decrease pressure
- vapor pressure depends on many variables

Fuel vapor pressure vs. temperature and fuel mass loading (Lee and Shepherd, 1999)

- Liquid fuel composition usually not known for commercial fuels → several 100 components
- composition changes from batch to batch, can be affected by history, transport, etc.
- composition of liquid not the same as fuel vapor

Experimental Setup

22 L, stainless steel, cylindrical combustion vessel

♦ Ignition Detection

- flame visualization
- pressure transducer
- thermocouple

♦ Schlieren visualization

 high-speed camera (10,000+ frames per second)

♦ Vessel Heating System

- silicone heaters, 4 zones
- high-current heater control unit
- up to ~ 150°C

8/22/13

Results: Kerosene Ignition

E

- 1-K kerosene at 45-62°C, 100 kPa
- fixed 3.3 mm spark gap
- 50 kg/m³ fuel mass loading
- * C ~ 11 68 pF, V ~ 6.4 11.4 kV \rightarrow E_{spark} ~ 0.3 2.3 mJ

kerosene-air, 45°C

kerosene-air, 55°C

kerosene-air, 50°C

8/22/13

Results: Kerosene-Air at 60°C

Spark Energy Density (µJ/mm)

Results: Comparison with Hexane

Results: Comparison with H_2

• Energy/length used to account for different length

•Normalize spark energies from 5% and 7% H₂ tests by spark gap widths used (2 and 1 mm)

 Normalize spark energies from kerosene tests by

Results: Varying Kerosene Fuel Temperature

Parametric Study

- Ignition energy model
- Mixture composition is required
- Raoult's Law

liquid composition

• Obtain X_i through a distillation curve or gas chromatography

saturation pressure

Gas chromatograph (Woodrow, 2000)

Parametric Study

- Raoult's law does not take into consideration the fuel mass loading
- "headspace equation" \rightarrow conservation of moles
- *K* is the hydrocarbon liquid-vapor distribution coefficient

Parametric Study Results

• Effect of fuel mass loading on pressure for a kerosene-based fuel

Parametric Study Results

8/22/13

Conclusions

- Electrostatic spark ignition tests using kerosene over a range of temperatures at atmospheric pressure.
- Statistical analysis of probability of ignition vs. spark energy density at 60°C
- Kerosene-air mixture has a lower ignition energy at 60°C than H_2 - O_2 -Ar mixture previously used in aircraft certification (5% H_2)
- Model to obtain fuel vapor composition given changes in flash point, temperature, pressure and fuel mass loading
- From vapor composition predictions, lighter mass hydrocarbons are more appropriate for low temperature fuel vapor surrogates.

Questions

