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Motivation Hot Particle Ignition

Hot Particle Ignition Sources

Lightning attaches to the top of
the fastener and causes damage
to the resin and fibers on the
backface of the composite
laminate
The breakup of the composite is
due to its poor electrical
conductivity that leads to
resistive heating

P. Feraboli, M. Miller. Composites
Part A: Applied Science and Man-
ufacturing, Volume 40, Issues 6-7,
July 2009, Pages 954-967

Ignition at edge of carbon fiber com-
posite structure, Boeing
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Objective Current study

Current study

Material d (mm) Vp (m/s) Tsphere (K)
alumina 6.0, 3.5, 1.8 2.3 − 2.4 800 − 1200

Mixture T0 (K) P0 (kPa) Φ
n-hexane–air 300 100 0.7 − 2.2

Φ = 0.9
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Materials and Methods Experimental Setup

Experimental Setup: Combustion Vessel
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Materials and Methods Optical Diagnostics

Optical Diagnostics: Shearing Interferometer

test section

laser

P A
WP

cameraL
LL

WP

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

� = 0o � = 45o � = 90o

y

x

y

x

y

x
z zz

� = 0o � = 45o � = 90o

y

xz

y

xz

y

xz

Finite fringe configurations

S. Coronel (Caltech) Ignition of n-Hexane-Air by Moving Hot Particles 9th US Nat. Combs. Meeting 7 / 19



Materials and Methods Optical Diagnostics

Optical Diagnostics: Shearing Interferometer

test section

laser

P A
WP

cameraL
LL

WP

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

� = 0o � = 45o � = 90o

y

x

y

x

y

x
z zz

� = 0o � = 45o � = 90o

y

xz

y

xz

y

xz

Finite fringe configurations

S. Coronel (Caltech) Ignition of n-Hexane-Air by Moving Hot Particles 9th US Nat. Combs. Meeting 7 / 19



Materials and Methods Optical Diagnostics

Optical Diagnostics: Shearing Interferometer

test section

laser

P A
WP

cameraL
LL

WP

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

� = 0o � = 45o � = 90o

y

x

y

x

y

x
z zz

� = 0o � = 45o � = 90o

y

xz

y

xz

y

xz

Finite fringe configurations

S. Coronel (Caltech) Ignition of n-Hexane-Air by Moving Hot Particles 9th US Nat. Combs. Meeting 7 / 19



Materials and Methods Optical Diagnostics

Optical Diagnostics: Shearing Interferometer

test section

laser

P A
WP

cameraL
LL

WP

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

� = 0o � = 45o � = 90o

y

x

y

x

y

x
z zz

� = 0o � = 45o � = 90o

y

xz

y

xz

y

xz

Finite fringe configurations

S. Coronel (Caltech) Ignition of n-Hexane-Air by Moving Hot Particles 9th US Nat. Combs. Meeting 7 / 19



Materials and Methods Simulation Setup

Simulation Setup
Grid
→ 2D axisymmetric
→ Square of size 20d
→ 300, 000 cells
→ Sphere vicinity (40 µm cell size)

Boundary conditions
→ Tsphere = constant
→ Twall = 300 K
→ Inert surface
→ Neumann boundary condition

for species

Initial conditions
→ P0 = 100 kPa, T0 = 300 K and

Φ = 0.9
→ Flow N2 at t = 0− 250 ms and

u = (0, gt, 0)
→ One-step n-hexane1–air

(R→ P ) at t > 250 ms

Outlet

Inlet

OpenFOAM: Variable-density
reactive Navier-Stokes equations

1 H. P. Ramirez et al. (2011). Proceedings of
the Combustion Institute, 33
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Results Simulation Results

N2 Hot Particle Wake (Simulation)

front stagnation point

δT ↑
flow separation

rear stagnation point

toroidal vortex
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Results

Unreacted Hot Particle Wake: ≈ 900 K (Exp. and Sim.)

d = 6.0 mm

t = 7.0 ms t = 8.0 ms t = 9.0 ms t = 10.0 ms
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Results

Unreacted Hot Particle Wake (Experiment)

Time averaged
unwrapped

optical phase

1 frame 5 frames 10 frames 15 frames

-18

-16

-14

-12

-10

-8

-6

-4

-2

∆
ϕ

z

x

ray

n(r)

r
y

Abel transform

F (x) = 2

∫ ∞

x

f(r)r

(r2 − x2)1/2
dr. (1)

The inverse Abel transform is given by

f(r) = − 1

π

∫ ∞

r

dF

dx

dx

(x2 − r2)1/2
, (2)

f(r) =
2π

λ
[n(r)− no(r)] and F (x) = ∆ϕ (3)
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Results

Unreacted Hot Particle Wake (Experiment)

Gladstone-Dale relation n− 1 = Kρ

1 frame 5 frames 10 frames 15 frames
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Results Experimental and Simulation Results

Unreacted Hot Particle Wake: Validation
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Results Experimental Results

Ignition (Experiment)

1.8 mm
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Results Simulation Results

Ignition (Simulation)

t = 1.25 ms t = 5.00 ms t = 15.0 ms t = 15.5 ms t = 16.25 ms

Arrival of
reactive mixture

(R)

Contact of
reactive mixture

(R) with hot
sphere

Creation of
products (P)

Flame
propagation

Flame
propagation
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Results Experimental Results

Flame Propagation (Experiment)

Recall: Φ = 0.9 Current flame: Sb = 2.6 m/s Particle speed: Vp = 2.3− 2.4 m/s

d = 6.0 mm

d = 3.5 mm

d = 1.8 mm

1.5 ms 3.5 ms 5.5 ms 7.5 ms 9.5 ms 11.5 ms

S. Coronel (Caltech) Ignition of n-Hexane-Air by Moving Hot Particles 9th US Nat. Combs. Meeting 16 / 19



Results Experimental and Simulation Results

Ignition Thresholds (Exp. and Sim.)
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Conclusions

Conclusions

Simulation predicts ignition to occur in the flow separation region

The ignition threshold was found to be 981 ± 10 K, 1010 ± 25 K, and
1159 ± 10 K, for sphere diameters of 6.0 mm, 3.5 mm and 1.8 mm,
respectively at Vp = 2.3 − 2.4 m/s for alumina spheres
Simulations using a one-step model predicted an ignition temperature
400 K higher than the experimental thresholds
→ Similar trends predicted
→ Use of one-step model not sufficient to capture ignition behavior
→ Have not accounted for surface reactions
→ Have not accounted for species diffusion to the surface
→ Further understanding of the low-temperature oxidation of n-hexane

needed
Flame is affected by the presence of the sphere for the mixture
composition tested
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→ Have not accounted for species diffusion to the surface
→ Further understanding of the low-temperature oxidation of n-hexane

needed
Flame is affected by the presence of the sphere for the mixture
composition tested
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