Ignition of *n*-Hexane–Air by Moving Hot Particles: Effect of Particle Diameter

Stephanie Coronel Josue Melguizo-Gavilanes Joseph E. Shepherd

Graduate Aeronautical Laboratories, California Institute of Technology

9th US National Combustion Meeting

Cincinnati, Ohio May 17 - 20, 2015

Hot Particle Ignition Sources

- Lightning attaches to the top of the fastener and causes damage to the resin and fibers on the backface of the composite laminate
- The breakup of the composite is due to its poor electrical conductivity that leads to resistive heating

P. Feraboli, M. Miller. Composites Part A: Applied Science and Manufacturing, Volume 40, Issues 6-7, July 2009, Pages 954-967

Ignition at edge of carbon fiber composite structure, Boeing

Hot Particle Ignition Sources

- Lightning attaches to the top of the fastener and causes damage to the resin and fibers on the backface of the composite laminate
- The breakup of the composite is due to its poor electrical conductivity that leads to resistive heating

P. Feraboli, M. Miller. Composites Part A: Applied Science and Manufacturing, Volume 40, Issues 6-7, July 2009, Pages 954-967

Ignition at edge of carbon fiber composite structure, Boeing

Stationary Hot Particle Ignition

- H. Bothe et al. In Explosion Safety in Hazardous Areas, 1999. International Conference on (Conf. Publ. No. 469), pages 44–49, 1999
- T. H. Dubaniewicz et al. (2000, 2003)
- T. H. Dubaniewicz. Journal of Laser Applications, 18 (2006) 312–319

- M. Beyer and D. Markus. Sci. Tech. Energetic Materials, (2012)
- D. Roth et al. Combustion Science and Technology, 186 (2014) 1606–1617

M. Beyer and D. Markus (2012)

Roth et al. (2014)

Moving Hot Particle Ignition

- R. S. Silver. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23 (1937) 633-657
- S. Patterson. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 28 (1939) 1-22
- S. Patterson. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 30 (1940) 437-457

R. Silver (1937)

S. Patterson (1940)

Current study

Material	d (mm)	V_p (m/s)	T_{sphere} (K)
alumina	6.0, 3.5, 1.8	2.3 - 2.4	800 - 1200

Mixture	T_0 (K)	P_0 (kPa)	Φ
<i>n</i> -hexane—air	300	100	0.7 - 2.2

Current study

Material	d (mm)	V_p (m/s)	T_{sphere} (K)
alumina	6.0, 3.5, 1.8	2.3 - 2.4	800 - 1200

Mixture	T_0 (K)	P_0 (kPa)	Φ
<i>n</i> -hexane–air	300	100	0.7 - 2.2

 $\Phi = 0.9$

Experimental Setup: Combustion Vessel

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

pronel (Caltech)

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

Finite fringe configurations

Grid

- $\rightarrow 2$ D axisymmetric
- \rightarrow Square of size 20d
- $\rightarrow 300,000$ cells
- \rightarrow Sphere vicinity (40 μ m cell size)
- Boundary conditions
 - $\rightarrow T_{sphere} = constant$
 - $\rightarrow T_{wall} = 300 \text{ K}$
 - \rightarrow Inert surface
 - → Neumann boundary condition for species
- Initial conditions
 - $ightarrow P_0 = 100$ kPa, $T_0 = 300$ K and $\Phi = 0.9$
 - \rightarrow Flow N₂ at t = 0 250 ms and $\mathbf{u} = (0, gt, 0)$
 - → One-step *n*-hexane¹-air ($R \rightarrow P$) at t > 250 ms

 OpenFOAM: Variable-density reactive Navier-Stokes equations

- Grid
 - $\rightarrow 2$ D axisymmetric
 - \rightarrow Square of size 20d
 - $\rightarrow 300,000$ cells
 - \rightarrow Sphere vicinity (40 μ m cell size)
- Boundary conditions
 - $\rightarrow T_{sphere} = constant$
 - $\rightarrow T_{wall} = 300 \text{ K}$
 - \rightarrow Inert surface
 - → Neumann boundary condition for species
- Initial conditions
 - $ightarrow P_0 = 100$ kPa, $T_0 = 300$ K and $\Phi = 0.9$
 - \rightarrow Flow N₂ at t = 0 250 ms and $\mathbf{u} = (0, gt, 0)$
 - → One-step *n*-hexane¹-air ($R \rightarrow P$) at t > 250 ms

↑ Inlet

 OpenFOAM: Variable-density reactive Navier-Stokes equations

- Grid
 - $\rightarrow 2$ D axisymmetric
 - \rightarrow Square of size 20d
 - $\rightarrow 300,000$ cells
 - \rightarrow Sphere vicinity (40 μ m cell size)
- Boundary conditions
 - $\rightarrow T_{sphere} = constant$
 - $\rightarrow T_{wall} = 300 \text{ K}$
 - → Inert surface
 - → Neumann boundary condition for species
- Initial conditions
 - $ightarrow P_0 = 100$ kPa, $T_0 = 300$ K and $\Phi = 0.9$
 - \rightarrow Flow N₂ at t = 0 250 ms and $\mathbf{u} = (0, gt, 0)$
 - \rightarrow One-step *n*-hexane¹-air ($R \rightarrow P$) at t > 250 ms

↑ Inlet

- OpenFOAM: Variable-density reactive Navier-Stokes equations
- 1 H. P. Ramirez et al. (2011). Proceedings of the Combustion Institute, 33

- Grid
 - $\rightarrow 2$ D axisymmetric
 - \rightarrow Square of size 20d
 - $\rightarrow 300,000$ cells
 - \rightarrow Sphere vicinity (40 μ m cell size)
- Boundary conditions
 - $\rightarrow T_{sphere} = constant$
 - $\rightarrow T_{wall} = 300 \text{ K}$
 - \rightarrow Inert surface
 - → Neumann boundary condition for species
- Initial conditions
 - $ightarrow P_0 = 100$ kPa, $T_0 = 300$ K and $\Phi = 0.9$
 - \rightarrow Flow N₂ at t = 0 250 ms and $\mathbf{u} = (0, gt, 0)$
 - \rightarrow One-step *n*-hexane¹-air ($R \rightarrow P$) at t > 250 ms

↑ Inlet

- OpenFOAM: Variable-density reactive Navier-Stokes equations
- 1 H. P. Ramirez et al. (2011). Proceedings of the Combustion Institute, 33

Simulation Result

N₂ Hot Particle Wake (Simulation)

S. Coronel (Caltech)

Simulation Result

N₂ Hot Particle Wake (Simulation)

S. Coronel (Caltech)

Simulation Result

N₂ Hot Particle Wake (Simulation)

S. Coronel (Caltech)

Simulation Result

N₂ Hot Particle Wake (Simulation)

S. Coronel (Caltech)

Simulation Result

N₂ Hot Particle Wake (Simulation)

Simulation Resul

N₂ Hot Particle Wake (Simulation)

Unreacted Hot Particle Wake: ≈ 900 K (Exp. and Sim.)

S. Coronel (Caltech)

Ignition of n-Hexane-Air by Moving Hot Particles

9th US Nat. Combs. Meeting 10 / 1

Unreacted Hot Particle Wake (Experiment)

Time averaged unwrapped optical phase

Unreacted Hot Particle Wake (Experiment)

Unreacted Hot Particle Wake (Experiment)

. . . .

Time averaged unwrapped optical phase

Abel transform

$$F(x) = 2 \int_{x}^{\infty} \frac{f(r)r}{(r^2 - x^2)^{1/2}} \,\mathrm{d}r.$$
 (1)

Unreacted Hot Particle Wake (Experiment)

Time averaged unwrapped optical phase

Abel transform

 $F(x) = 2 \int_{x}^{\infty} \frac{f(r)r}{(r^2 - x^2)^{1/2}} \,\mathrm{d}r.$ (1)

The inverse Abel transform is given by

$$f(r) = -\frac{1}{\pi} \int_{r}^{\infty} \frac{\mathrm{d}F}{\mathrm{d}x} \frac{\mathrm{d}x}{(x^2 - r^2)^{1/2}},$$
 (2)

Unreacted Hot Particle Wake (Experiment)

Time averaged unwrapped optical phase

Abel transform

$$F(x) = 2 \int_{x}^{\infty} \frac{f(r)r}{(r^2 - x^2)^{1/2}} \,\mathrm{d}r.$$
 (1)

The inverse Abel transform is given by

$$f(r) = -\frac{1}{\pi} \int_{r}^{\infty} \frac{\mathrm{d}F}{\mathrm{d}x} \frac{\mathrm{d}x}{(x^2 - r^2)^{1/2}},$$
 (2)

$$f(r) = \frac{2\pi}{\lambda} [n(r) - n_o(r)]$$
 and $F(x) = \Delta \varphi$ (3)

Unreacted Hot Particle Wake (Experiment)

Gladstone-Dale relation $n-1 = K\rho$

Unreacted Hot Particle Wake (Experiment)

Gladstone-Dale relation $n-1 = K\rho$

 $P = \rho RT$

Unreacted Hot Particle Wake: Validation

Unreacted Hot Particle Wake: Validation

Ignition (Experiment)

 $1.8 \ \mathrm{mm}$

Arrival of reactive mixture (R)

Experimental Resul

Flame Propagation (Experiment)

Recall: $\Phi = 0.9$ Current flame: $S_b = 2.6$ m/s Particle speed: $V_p = 2.3 - 2.4$ m/s

d = 6.0 mmd = 3.5 mmd = 1.8 mm $1.5 \, \text{ms}$ 3.5 ms 5.5 ms 7.5 ms9.5 ms 11.5 ms

Ignition Thresholds (Exp. and Sim.)

Ignition Thresholds (Exp. and Sim.)

Ignition Thresholds (Exp. and Sim.)

Conclusions

Simulation predicts ignition to occur in the flow separation region

- The ignition threshold was found to be 981 ± 10 K, 1010 ± 25 K, and 1159 ± 10 K, for sphere diameters of 6.0 mm, 3.5 mm and 1.8 mm, respectively at $V_p = 2.3 2.4$ m/s for alumina spheres
- Simulations using a one-step model predicted an ignition temperature 400 K higher than the experimental thresholds
 - \rightarrow Similar trends predicted
 - \rightarrow Use of one-step model not sufficient to capture ignition behavior
 - \rightarrow Have not accounted for surface reactions
 - ightarrow Have not accounted for species diffusion to the surface
 - → Further understanding of the low-temperature oxidation of *n*-hexane needed
- Flame is affected by the presence of the sphere for the mixture composition tested

S. Coronel (Caltech)

Simulation predicts ignition to occur in the flow separation region

- The ignition threshold was found to be 981 ± 10 K, 1010 ± 25 K, and 1159 ± 10 K, for sphere diameters of 6.0 mm, 3.5 mm and 1.8 mm, respectively at $V_p = 2.3 2.4$ m/s for alumina spheres
- Simulations using a one-step model predicted an ignition temperature 400 K higher than the experimental thresholds
 - \rightarrow Similar trends predicted
 - ightarrow Use of one-step model not sufficient to capture ignition behavior
 - \rightarrow Have not accounted for surface reactions
 - ightarrow Have not accounted for species diffusion to the surface
 - → Further understanding of the low-temperature oxidation of *n*-hexane needed
- Flame is affected by the presence of the sphere for the mixture composition tested

S. Coronel (Caltech)

Simulation predicts ignition to occur in the flow separation region

- The ignition threshold was found to be 981 ± 10 K, 1010 ± 25 K, and 1159 ± 10 K, for sphere diameters of 6.0 mm, 3.5 mm and 1.8 mm, respectively at $V_p = 2.3 2.4$ m/s for alumina spheres
- Simulations using a one-step model predicted an ignition temperature 400 K higher than the experimental thresholds
 - \rightarrow Similar trends predicted
 - \rightarrow Use of one-step model not sufficient to capture ignition behavior
 - \rightarrow Have not accounted for surface reactions
 - \rightarrow Have not accounted for species diffusion to the surface
 - \rightarrow Further understanding of the low-temperature oxidation of *n*-hexane needed
- Flame is affected by the presence of the sphere for the mixture composition tested

S. Coronel (Caltech

Simulation predicts ignition to occur in the flow separation region

- The ignition threshold was found to be 981 ± 10 K, 1010 ± 25 K, and 1159 ± 10 K, for sphere diameters of 6.0 mm, 3.5 mm and 1.8 mm, respectively at $V_p = 2.3 2.4$ m/s for alumina spheres
- Simulations using a one-step model predicted an ignition temperature 400 K higher than the experimental thresholds
 - \rightarrow Similar trends predicted
 - \rightarrow Use of one-step model not sufficient to capture ignition behavior
 - \rightarrow Have not accounted for surface reactions
 - \rightarrow Have not accounted for species diffusion to the surface
 - → Further understanding of the low-temperature oxidation of *n*-hexane needed
- Flame is affected by the presence of the sphere for the mixture composition tested

S. Coronel (Caltech)

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology, S. A. Coronel was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1 and J. Melguizo-Gavilanes by the Natural Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship Program

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology, S. A. Coronel was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1 and J. Melguizo-Gavilanes by the Natural Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship Program

Thank You