Laminar Burning Speed of n-Hexane-Air Mixtures

S. Coronel ${ }^{1}$
R. Mével ${ }^{1}$
P. Vervish ${ }^{1}$
P. A. Boettcher ${ }^{1} \quad$ V. Thomas ${ }^{1}$
N. Chaumeix ${ }^{2} \quad$ N. Darabiha ${ }^{3}$ J. E. Shepherd ${ }^{1}$
${ }^{1}$ Graduate Aeronatical Laboratories, California Institute of Technology,
${ }^{2}$ Institut de Combustion, Aérothermique, Réactivité et Environnement CNRS,
${ }^{3}$ Laboratoire EM2C-CNRS UPR 288, École Centrale Paris
8th US National Combustion Meeting
University of Utah
May 19-22, 2013

Summary

1. Motivation

- Accidental Ignition

2. Previous Work
3. Materials and Methods
4. Results
5. Conclusions

Accidental Ignition

- Accidental ignition

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
Characterize fuel-oxidizer
properties (n-hexane)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel
quantity instrumentation
\rightarrow hot surface ignition
Characterize fuel-oxidizer
properties (n-hexane)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
Characterize fuel-oxidizer
properties (n-hexane)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
Characterize fuel-oxidizer
properties (n-hexane)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
\rightarrow ignition delay time (Burcat et al. and Zhukov et al.)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
\rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
\rightarrow heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
minimum ignition temperature
(Boettcher)
minimum ignition energy
(Bane)
laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
\rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
\rightarrow heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
\rightarrow minimum ignition temperature (Boettcher)
\rightarrow minimum ignition energy (Bane)
\rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
\rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
\rightarrow heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
\rightarrow minimum ignition temperature (Boettcher)
\rightarrow minimum ignition energy (Bane)

[^0]

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Accidental Ignition

- Accidental ignition
\rightarrow electrostatic ignition of fuel
\rightarrow lightning strike
\rightarrow electrical faults in pumps, fuel quantity instrumentation
\rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
\rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
\rightarrow heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
\rightarrow minimum ignition temperature (Boettcher)
\rightarrow minimum ignition energy (Bane)
\rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Summary

1. Motivation

2. Previous Work

- Laminar Burning Speed

3. Materials and Methods
4. Results
5. Conclusions

Laminar Burning Speed

- Davis and Law :
$\rightarrow T_{0}=296 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$
- Farrell et al. :
$\rightarrow T_{0}=450 \mathrm{~K}$ and $P_{0}=304 \mathrm{kPa}$
- Kelley et al. :
$\rightarrow T_{0}=353 \mathrm{~K}$ and $P_{0}=100-1000 \mathrm{kPa}$
- Ji et al. :

$$
\rightarrow T_{0}=353 \mathrm{~K} \text { and } P_{0}=100 \mathrm{kPa}
$$

Laminar Burning Speed

$$
P=0.2 \mathrm{~atm}
$$

- Davis and Law :

$$
\rightarrow T_{0}=296 \mathrm{~K} \text { and } P_{0}=100 \mathrm{kPa}
$$

- Farrell et al. :

$$
\rightarrow T_{0}=450 \mathrm{~K} \text { and } P_{0}=304 \mathrm{kPa}
$$

- Kelley et al. :

$$
\rightarrow T_{0}=353 \mathrm{~K} \text { and } P_{0}=100-1000 \mathrm{kPa}
$$

- Ji et al. :

$$
\rightarrow T_{0}=353 \mathrm{~K} \text { and } P_{0}=100 \mathrm{kPa}
$$

$$
P=1 \mathrm{~atm} \quad P=1 \mathrm{~atm}
$$

Laminar Burning Speed

$$
P=0.2 \mathrm{~atm}
$$

- Davis and Law :

$$
\rightarrow T_{0}=296 \mathrm{~K} \text { and } P_{0}=100 \mathrm{kPa}
$$

- Farrell et al. :

$$
\rightarrow T_{0}=450 \mathrm{~K} \text { and } P_{0}=304 \mathrm{kPa}
$$

- Kelley et al. :

$$
\rightarrow T_{0}=353 \mathrm{~K} \text { and } P_{0}=100-1000 \mathrm{kPa}
$$

- Ji et al. :

$$
\rightarrow T_{0}=353 \mathrm{~K} \text { and } P_{0}=100 \mathrm{kPa}
$$

$$
P=1 \mathrm{~atm} \quad P=1 \mathrm{~atm}
$$

$$
\begin{gathered}
n \text {-hexane-air } \\
P_{0} \leq 100 \mathrm{kPa} \\
T_{0}=296-380 \mathrm{~K}
\end{gathered}
$$

1. Motivation

2. Previous Work
3. Materials and Methods

- Experimental Setup
- Burning Speed Measurements

4. Results
5. Conclusions

Experimental Setup : Combustion Vessel

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

pressure manometer

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

pressure manometer

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

Experimental Setup : Combustion Vessel

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

fan mixer

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

gas fill line
fan mixer

piezoresistive pressure transducer

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

gas fill line
fan mixer

piezoresistive pressure transducer

Experimental Setup : Schlieren Setup

- Observe changes in the density gradient of the fluid due to variations in the refractive index

High speed camera

Experimental Setup : Schlieren Setup

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
\rightarrow very hot flame propagating
into cold unburned reactants High speed camera

Experimental Setup : Schlieren Setup

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
\rightarrow very hot flame propagating into cold unburned reactants

Experimental Setup : Schlieren Setup

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
\rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :

Experimental Setup : Schlieren Setup

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
\rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :
$\rightarrow 10,000$ frames per second

Experimental Setup : Schlieren Setup

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
\rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :
$\rightarrow 10,000$ frames per second
$\rightarrow 512 \times 512$ resolution

Burning Speed Measurements

$\mathrm{t}=5.0 \mathrm{~ms}$

$\mathrm{t}=9.7 \mathrm{~ms}$

$\mathrm{t}=17.1 \mathrm{~ms}$

- Edge detection using the Canny method (MATLAB)
Fit ellipse to detected edge Linear extrapolation to unstretched flame speed

Burning Speed Measurements

$\mathrm{t}=5.0 \mathrm{~ms}$

$\mathrm{t}=9.7 \mathrm{~ms}$

$\mathrm{t}=17.1 \mathrm{~ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge use area of ellipse to find an equivalent radius Linear extrapolation to unstretched flame speed

Burning Speed Measurements

$\mathrm{t}=5.0 \mathrm{~ms}$

$\mathrm{t}=9.7 \mathrm{~ms}$

$\mathrm{t}=17.1 \mathrm{~ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
\rightarrow use area of ellipse to find an equivalent radius
Linear extrapolation to unstretched flame speed

Burning Speed Measurements

$\mathrm{t}=5.0 \mathrm{~ms}$

$\mathrm{t}=9.7 \mathrm{~ms}$

$\mathrm{t}=17.1 \mathrm{~ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
\rightarrow use area of ellipse to find an equivalent radius
- Linear extrapolation to unstretched flame speed

Burning Speed Measurements

$\mathrm{t}=5.0 \mathrm{~ms}$

$\mathrm{t}=9.7 \mathrm{~ms}$

$\mathrm{t}=17.1 \mathrm{~ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
\rightarrow use area of ellipse to find an equivalent radius
- Linear extrapolation to unstretched flame speed

Validation of Burning Speed Measurements

$T_{0}=296 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$

- Two-tailed z-test ($\phi=0.8-1.4$)
$H_{0}: \mu_{1}=\mu_{2}$ and $H_{a}: \mu_{1} \neq \mu_{2}$
$\mu_{1}=$ present study mean
$\mu_{2}=$ Davis and Law mean
Null hypothesis, H_{0} cannot be rejected
Difference between the two data sets is zero ($\alpha=0.02$ confidence level)

Validation of Burning Speed Measurements

$T_{0}=296 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$

- Two-tailed z-test ($\phi=0.8-1.4$)
$H_{0}: \mu_{1}=\mu_{2}$ and $H_{a}: \mu_{1} \neq \mu_{2}$ $\mu_{1}=$ present study mean $\mu_{2}=$ Davis and Law mean
- Null hypothesis, H_{0} cannot be rejected
Difference between the two data sets is zero ($\alpha=0.02$ confidence level)

Validation of Burning Speed Measurements

$T_{0}=296 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$

- Two-tailed z-test ($\phi=0.8-1.4$)
$H_{0}: \mu_{1}=\mu_{2}$ and $H_{a}: \mu_{1} \neq \mu_{2}$
$\mu_{1}=$ present study mean
$\mu_{2}=$ Davis and Law mean
- Null hypothesis, H_{0} cannot be rejected
- Difference between the two data sets is zero ($\alpha=0.02$ confidence level)

Summary

1. Motivation
2. Previous Work
3. Materials and Methods
4. Results

- Experimental Results
- Modeling Results

5. Conclusions

$T_{0}=380 \mathrm{~K}, P_{0}=50 \mathrm{kPa}, \phi=1.10$

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)
\rightarrow statistically significant difference

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)
\rightarrow statistically significant difference

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$
- Decrease in burning speed with increase in pressure

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)
\rightarrow statistically significant difference

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$
- Decrease in burning speed with increase in pressure
\rightarrow increase in the upstream gas density

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)
\rightarrow statistically significant difference

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$
- Decrease in burning speed with increase in pressure
\rightarrow increase in the upstream gas density

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)
\rightarrow statistically significant difference

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$
- Decrease in burning speed with increase in pressure
\rightarrow increase in the upstream gas density

Pressure Effect

$$
T_{0}=296 \mathrm{~K}
$$

- Uncertainty at $50 \mathrm{kPa} \approx 5 \%$
- t-test ($\alpha=0.2$ confidence level)
\rightarrow statistically significant difference

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$
- Decrease in burning speed with increase in pressure
\rightarrow increase in the upstream gas density

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296-380 \mathrm{~K}$
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
$\rightarrow 53 \%$ increase at $\phi=1.4$
- Rate of burning speed increase with temperature for fixed ϕ

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296-380 \mathrm{~K}$
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 53 \%$ increase at $\phi=1.4$ Rate of burning speed increase with temperature for fixed ϕ

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296-380 \mathrm{~K}$
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
- Rate of burning speed increase with temperature for fixed ϕ

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296$ - 380 K
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
$\rightarrow 53 \%$ increase at $\phi=1.4$

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296-380 \mathrm{~K}$
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
$\rightarrow 53 \%$ increase at $\phi=1.4$
- Rate of burning speed increase with temperature for fixed ϕ
$\rightarrow 0.27 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=0.9$

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296-380 \mathrm{~K}$
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
$\rightarrow 53 \%$ increase at $\phi=1.4$
- Rate of burning speed increase with temperature for fixed ϕ
$\rightarrow 0.27 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=0.9$

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296$ - 380 K
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
$\rightarrow 53 \%$ increase at $\phi=1.4$
- Rate of burning speed increase with temperature for fixed ϕ
$\rightarrow 0.27 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=0.9$
$\rightarrow 0.25 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=1.1$

Temperature Effect

$P_{0}=50 \mathrm{kPa}$

- From $T_{0}=296-380 \mathrm{~K}$
$\rightarrow 64 \%$ increase at $\phi=0.9$
$\rightarrow 47 \%$ increase at $\phi=1.1$
$\rightarrow 53 \%$ increase at $\phi=1.4$
- Rate of burning speed increase with temperature for fixed ϕ
$\rightarrow 0.27 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=0.9$
$\rightarrow 0.25 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=1.1$
$\rightarrow 0.19 \mathrm{~cm} / \mathrm{s} / \mathrm{K}$ for $\phi=1.4$

Markstein Length

$$
\phi=1.65
$$

$$
T_{0}=296 \mathrm{~K} \text { and } P_{0}=50 \mathrm{kPa}
$$

Markstein Length

$$
\phi=0.91
$$

$\phi=1.65$

$$
T_{0}=296 \mathrm{~K} \text { and } P_{0}=50 \mathrm{kPa}
$$

Reaction Models

- JetSURF model
$\rightarrow 2163$ reactions
$\rightarrow 348$ species
- Ramirez et al. model
$\rightarrow 1789$ reactions
$\rightarrow 401$ species
- Blanquart (CIT) model
$\rightarrow 1119$ reactions
$\rightarrow 155$ species
- Regath software
\rightarrow FORTRAN 90 package
\rightarrow thermodynamics and chemical routines
- Results
\rightarrow 1D freely propagating flame
\rightarrow mixture averaged transport
\rightarrow no thermal diffusion

Equivalence Ratio Effect

$T_{0}=296 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$

$T_{0}=353 \mathrm{~K}$ and $P_{0}=100 \mathrm{kPa}$
JetSurf: --=- ; Ramirez et al.: — — ; Blanquart:

Pressure Effect

$T_{0}=296 \mathrm{~K}$ and $P_{0}=50 \mathrm{kPa}$

$T_{0}=353 \mathrm{~K}$ and $\phi=0.9$

JetSurf: =--- ; Ramirez et al.: — — ; Blanquart:

JetSurf : =-=- ; Ramirez et al.: — - ; Blanquart:

Summary

1. Motivation

2. Previous Work
3. Materials and Methods
4. Results
5. Conclusions

- Experiments
- Reaction Models

Experimental Conclusions

- Increase in the laminar burning speed from $P_{0}=100 \mathrm{kPa}$ to $50 \mathrm{kPa} \rightarrow$ $\alpha=0.2$ confidence level
- Highest rate of burning speed increase with temperature \rightarrow lean mixtures
- Lowest rate of burning speed increase with temperature \rightarrow rich mixtures
- Pressure dependency agreement with thermal flame theory of Mallard and Le Chatelier $\rightarrow n=1.5$
- Transition from positive to negative Markstein lengths consistent with Kelley et al. data Models
- At $T_{0}=296 \mathrm{~K}$, the JetSURF model prediction is $<12 \%$ at approximately $\phi \leq 1.30$
- At $T_{0}=353 \mathrm{~K}$, the JetSURF model prediction is $<10 \%$ at approximately $\phi \leq 1.45$
- At $T_{0}=296 \mathrm{~K}$, the Blanquart model prediction is $<12 \%$ at $\phi \approx 1.30-1.60$
- At $T_{0}=353 \mathrm{~K}$, the Blanquart model prediction is $<10 \%$ at $\phi \approx 1.45-1.70$
- The Ramirez et al. model systematically underestimates the laminar burning speed

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

Thank You

[^0]: \rightarrow laminar burning speed

