Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000

Laminar Burning Speed of *n*-Hexane–Air Mixtures

S. Coronel¹ R. Mével¹ P. Vervish¹ P. A. Boettcher¹ V. Thomas¹ N. Chaumeix² N. Darabiha³ J. E. Shepherd¹

¹Graduate Aeronatical Laboratories, California Institute of Technology,

²Institut de Combustion, Aérothermique, Réactivité et Environnement CNRS,

³Laboratoire EM2C-CNRS UPR 288, École Centrale Paris

8th US National Combustion Meeting

University of Utah May 19 - 22, 2013

・ロト ・ 中下・ エリト ・ ヨー・ うらつ

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Summary				

- 1. Motivation • Accidental Ignition
- 2. Previous Work
- 3. Materials and Methods
- 4. Results
- 5. Conclusions

Previous Work	Materials and Methods	Results	Conclusions
о С	0000	0000000	000
nition			
	revious Work	revious Work Materials and Methods	revious Work Materials and Methods Results

Accidental ignition

- $\rightarrow\,$ electrostatic ignition of fuel
- \rightarrow lightning strike
- → electrical faults in pumps, fuel quantity instrumentation
- ightarrow hot surface ignition
- Characterize fuel-oxidizer properties (*n*-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Appletont	al landition			
Accident	al ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - → electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (*n*-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			
Accident				

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - ightarrow lightning strike
 - → electrical faults in pumps, fuel quantity instrumentation
 - ightarrow hot surface ignition
- Characterize fuel-oxidizer properties (*n*-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (*n*-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (*n*-hexane)
 - → ignition delay time (Burcat et al., and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow~$ hot surface ignition
- Characterize fuel-oxidizer properties (*n*-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow~$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - $\rightarrow\,$ ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow~$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - $\rightarrow\,$ ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow~$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - \rightarrow minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow~$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - \rightarrow minimum ignition temperature (Boettcher)
 - \rightarrow minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
•	0	0000	0000000	000
Accident	al Ignition			

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow~$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - \rightarrow minimum ignition temperature (Boettcher)
 - \rightarrow minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Summary				

1. Motivation

2. Previous Work

- Laminar Burning Speed
- 3. Materials and Methods

4. Results

5. Conclusions

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	•	0000	00000000	000
Laminar	Burning Speed			

Davis and Law :

$$ightarrow \ T_0 = 296$$
 K and $P_0 = 100$ kPa

• Farrell et al. :

$$\rightarrow$$
 T₀ = 450 K and P₀ = 304 kPa

• Kelley et al. :

$$\rightarrow$$
 T₀ = 353 K and P₀ = 100-1000 kPa

Ji et al. :

$$\rightarrow$$
 T₀ = 353 K and P₀ = 100 kPa

• Kelley et al. :

 \rightarrow T₀ = 353 K and P₀ = 100-1000 kPa

Ji et al. :

$$\rightarrow$$
 T₀ = 353 K and P₀ = 100 kPa

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

P = 1 atm P = 1 atm

$$P = 1$$
 atm

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

P = 1 atm

n-hexane-air $P_0 \leq 100 \text{ kPa}$ $T_0 = 296$ -380 K

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Summary				

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

1. Motivation

2. Previous Work

3. Materials and Methods

- Experimental Setup
- Burning Speed Measurements

4. Results

5. Conclusions

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0 00	00000000	000
Exporim	ontal Satur · (Compustion Voscal		

Experimental Setup . Compustion vesser

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	● ○ ○○	0000000	000
Experiment	al Setup : Cor	mbustion Vessel		

11.7 cm diameter windows

イロト イポト イモト イモト 三日

590

11.7 cm diameter windows

<□▶ <□▶ < □▶ < □▶ < □▶ = □ ○ ○ ○ ○

pressure manometer

pressure manometer

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Observe changes in the density gradient of the fluid due to variations in the refractive index

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - \rightarrow very hot flame propagating into cold unburned reactants

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - \rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - \rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :
 - ightarrow 10,000 frames per second

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - \rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :
 - \rightarrow 10,000 frames per second
 - \rightarrow 512×512 resolution

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
D ·	CILM			

 $t=5.0\;ms$

t = 9.7 ms

t = 17.1 ms

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
 - ightarrow use area of ellipse to find an equivalent radius

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Linear extrapolation to unstretched flame speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
D ·	C N 4			

 $t=5.0\;ms$

t = 9.7 ms

 $t=17.1\ \mathrm{ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge

ightarrow use area of ellipse to find an equivalent radius

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Linear extrapolation to unstretched flame speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
D ·	C INA			

 $t=5.0\ ms$

t = 9.7 ms

 $t=17.1\;\mathrm{ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
 - $\rightarrow\,$ use area of ellipse to find an equivalent radius
- Linear extrapolation to unstretched flame speed

Motivation		Previous Work		Materials and Methods	Results	Conclusions
0			0	0000	00000000	000
D		C	1			

 $t=5.0\;ms$

t = 9.7 ms

 $t=17.1\;\mathrm{ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
 - $\rightarrow\,$ use area of ellipse to find an equivalent radius
- Linear extrapolation to unstretched flame speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
D ·	C N4			

 $t=5.0\;ms$

t = 9.7 ms

 $t=17.1\ \mathrm{ms}$

- Edge detection using the Canny method (MATLAB)
- Fit ellipse to detected edge
 - $\rightarrow\,$ use area of ellipse to find an equivalent radius
- Linear extrapolation to unstretched flame speed

Validation of Burning Speed Measurements

 $T_0 = 296$ K and $P_0 = 100$ kPa

• Two-tailed z-test ($\phi = 0.8$ -1.4)

 $H_0: \mu_1 = \mu_2$ and $H_a: \mu_1 \neq \mu_2$ $\mu_1 =$ present study mean $\mu_2 =$ Davis and Law mean

- Null hypothesis, H₀ cannot be rejected
- Difference between the two data sets is zero ($\alpha = 0.02$ confidence level)

イロト イポト イヨト イヨト

э

 $T_0 = 296$ K and $P_0 = 100$ kPa

- Two-tailed z-test ($\phi = 0.8$ -1.4)
 - $H_0: \mu_1 = \mu_2$ and $H_a: \mu_1 \neq \mu_2$ $\mu_1 =$ present study mean $\mu_2 =$ Davis and Law mean
- Null hypothesis, *H*₀ cannot be rejected
- Difference between the two data sets is zero ($\alpha = 0.02$ confidence level)

イロト イポト イヨト イヨト

э

 $T_0 = 296$ K and $P_0 = 100$ kPa

• Two-tailed z-test ($\phi = 0.8$ -1.4)

 $\begin{aligned} H_0: \mu_1 &= \mu_2 \text{ and } H_a: \mu_1 \neq \mu_2 \\ \mu_1 &= \text{present study mean} \\ \mu_2 &= \text{Davis and Law mean} \end{aligned}$

- Null hypothesis, *H*⁰ cannot be rejected
- Difference between the two data sets is zero ($\alpha = 0.02$ confidence level)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Summary				

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- 1. Motivation
- 2. Previous Work
- 3. Materials and Methods
- 4. Results
 - Experimental Results
 - Modeling Results
- 5. Conclusions

$T_0=$ 380 K, $P_0=$ 50 kPa, $\phi=$ 1.10

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Droccuro	Effoct			
FIESSULE	LIECL			

 $T_0 = 296 \text{ K}$

- Uncertainty at 50 kPa \approx 5%

- - イロト 不得 トイヨト イヨト 3 Sac

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Droccuro	Effoct			
FIESSULE	LIECL			

- Uncertainty at 50 kPa pprox 5%
- t-test ($\alpha = 0.2$ confidence level) \rightarrow statistically significant
- Decrease in burning speed with increase in pressure
 - \rightarrow increase in the upstream gas density

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Droccuro	Effoct			
FIESSULE	LIECL			

- Uncertainty at 50 kPa pprox 5%
- t-test ($\alpha = 0.2$ confidence level) \rightarrow statistically significant difference
- Decrease in burning speed with increase in pressure
 - → increase in the upstream gas density
 - うせん 一川 (山下)(山下)(山下)(山下)

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Droccuro	Effoct			
FIESSULE	LIECL			

- Uncertainty at 50 kPa \approx 5%
- t-test ($\alpha = 0.2$ confidence level) \rightarrow statistically significant difference
- Decrease in burning speed with increase in pressure
 - \rightarrow increase in the upstream gas density

(日) (四) (日) (日) (日)

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Droccuro	Effoct			
FIESSULE	LIECL			

- Uncertainty at 50 kPa \approx 5%
- t-test ($\alpha = 0.2$ confidence level)

- Decrease in burning speed with increase in pressure
 - $\rightarrow\,$ increase in the upstream gas density

(日) (四) (日) (日) (日)

200

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Pressure	Effect			

- Uncertainty at 50 kPa \approx 5%
- t-test (\(\alpha\) = 0.2 confidence level)

- Decrease in burning speed with increase in pressure
 - $\rightarrow\,$ increase in the upstream gas density

うして ふゆ く 山 マ ふ し マ うくの

0000	0000000	000
	00000000	000

- Uncertainty at 50 kPa \approx 5%
- t-test (\(\alpha\) = 0.2 confidence level)

- Decrease in burning speed with increase in pressure

Previous vvork	Iviaterials and iviethods	Results	Conclusions
0	0000	0000000	000
ect			
	o	o oooo	

- Uncertainty at 50 kPa \approx 5%
- t-test (\(\alpha\) = 0.2 confidence level)

- Decrease in burning speed with increase in pressure

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Tempera	ture Effect			

• From $T_0 = 296-380$ K

- $ightarrow\,$ 64% increase at $\phi=$ 0.9
- ightarrow 47% increase at $\phi=1.1$
- \rightarrow 53% increase at $\phi = 1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi=$ 0.9
 - ightarrow 0.25 cm/s/K for $\phi = 1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト 不得下 不良下 不良下

Э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Tempera	ture Effect			

- From $T_0 = 296-380$ K
 - ightarrow 64% increase at $\phi=$ 0.9
 - ightarrow 47% increase at $\phi = 1.1$
 - \rightarrow 53% increase at $\phi = 1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi=$ 0.9
 - ightarrow 0.25 cm/s/K for $\phi=1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

Sac

э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Tempera	ture Effect			

- From $T_0 = 296-380$ K
 - $\rightarrow~$ 64% increase at $\phi=$ 0.9
 - ightarrow 47% increase at $\phi=1.1$

ightarrow ~53% increase at $\phi = 1.4$

- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi=$ 0.9
 - \rightarrow 0.25 cm/s/K for $\phi = 1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Tempera	ture Effect			

- From $T_0 = 296-380$ K
 - ightarrow 64% increase at $\phi = 0.9$
 - ightarrow 47% increase at $\phi=1.1$
 - ightarrow 53% increase at $\phi=1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi=$ 0.9
 - \rightarrow 0.25 cm/s/K for $\phi = 1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

Э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Tempera	ture Effect			

 $P_0 = 50 \text{ kPa}$

- From $T_0 = 296-380$ K
 - ightarrow 64% increase at $\phi = 0.9$
 - $\rightarrow~$ 47% increase at $\phi=1.1$
 - ightarrow 53% increase at $\phi = 1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi=$ 0.9
 - ightarrow 0.25 cm/s/K for $\phi=1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Tempera	ture Effect			

 $P_0 = 50 \text{ kPa}$

- From $T_0 = 296-380$ K
 - ightarrow 64% increase at $\phi=$ 0.9
 - $\rightarrow~$ 47% increase at $\phi=1.1$
 - ightarrow 53% increase at $\phi = 1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi=$ 0.9
 - \rightarrow 0.25 cm/s/K for $\phi = 1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

Э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Tempera	ature Effect			

 $P_0 = 50 \text{ kPa}$

- From $T_0 = 296-380$ K
 - ightarrow 64% increase at $\phi=$ 0.9
 - $\rightarrow~$ 47% increase at $\phi=1.1$
 - ightarrow 53% increase at $\phi = 1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for ϕ = 0.9
 - ightarrow 0.25 cm/s/K for $\phi = 1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

Э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Tempera	ature Effect			

- From $T_0 = 296-380$ K
 - ightarrow 64% increase at $\phi = 0.9$
 - $\rightarrow~$ 47% increase at $\phi=1.1$
 - ightarrow 53% increase at $\phi = 1.4$
- Rate of burning speed increase with temperature for fixed ϕ
 - ightarrow 0.27 cm/s/K for $\phi =$ 0.9
 - ightarrow 0.25 cm/s/K for $\phi=1.1$
 - ightarrow 0.19 cm/s/K for $\phi=1.4$

イロト イポト イヨト イヨト

Э

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Markstein I	_ength			

 $T_0 = 296$ K and $P_0 = 50$ kPa

$$\phi = 0.91$$

 $\phi = 1.65$

ヘロト ヘロト ヘモト ヘモト

æ

590

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Markstei	n Length			

 $T_0 = 296$ K and $P_0 = 50$ kPa

$$\phi = 0.91$$

 $\phi = 1.65$

ヘロト 人間ト 人団ト 人団ト

æ

990

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Reaction M	lodels			

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- JetSURF model
 - \rightarrow 2163 reactions
 - \rightarrow 348 species
- Ramirez et al. model
 - ightarrow 1789 reactions
 - ightarrow 401 species
- Blanquart (CIT) model
 - ightarrow 1119 reactions
 - ightarrow 155 species
- Regath software
 - \rightarrow FORTRAN 90 package
 - $\rightarrow\,$ thermodynamics and chemical routines
- Results
 - $\rightarrow~$ 1D freely propagating flame
 - \rightarrow mixture averaged transport
 - \rightarrow no thermal diffusion

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
- · ·				

Equivalence Ratio Effect

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Pressure	Effect			

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Tempera	ture Effect			

JetSurf : - - - - ; Ramirez et al. : - - ; Blanquart : ------

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへ⊙

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Summary				

- 1. Motivation
- 2. Previous Work
- 3. Materials and Methods
- 4. Results
- 5. Conclusions
 - Experiments
 - Reaction Models

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Experime	ntal Conclusio	ons		

- Increase in the laminar burning speed from P_0 = 100 kPa to 50 kPa \rightarrow α = 0.2 confidence level
- Highest rate of burning speed increase with temperature \rightarrow lean mixtures
- Lowest rate of burning speed increase with temperature ightarrow rich mixtures
- Pressure dependency agreement with thermal flame theory of Mallard and Le Chatelier $\rightarrow n=1.5$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

• Transition from positive to negative Markstein lengths consistent with Kelley et al. data

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	0000000	000
Comparison	of JetSURF,	Ramirez et al.,	and Blanquart	I
Models				

- At $T_0 =$ 296 K, the JetSURF model prediction is <12% at approximately $\phi \leq 1.30$
- At $T_0=$ 353 K, the JetSURF model prediction is ${<}10\%$ at approximately $\phi \leq 1.45$
- At T_0 = 296 K, the Blanquart model prediction is <12% at $\phi pprox$ 1.30-1.60
- At $T_0=$ 353 K, the Blanquart model prediction is <10% at $\phi pprox$ 1.45-1.70

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

 The Ramirez et al. model systematically underestimates the laminar burning speed

Motivation	Previous Work	Materials and Methods	Results	Conclusions
0	0	0000	00000000	000
Acknowle	edgements			

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

(日)、(型)、(E)、(E)、(E)、(Q)()

Motivation	Previous Work	Materials and Methods	Results	Conclusions		
0	0	0000	0000000	000		
Acknowledgements						

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

Thank You

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙