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Laminar Burning Speed

Davis and Law :
→ T0 = 296 K and P0 = 100 kPa

Farrell et al. :
→ T0 = 450 K and P0 = 304 kPa

Kelley et al. :
→ T0 = 353 K and P0 = 100-1000 kPa

Ji et al. :
→ T0 = 353 K and P0 = 100 kPa

P = 0.2 atm

P = 1 atm P = 1 atm

n-hexane–air
P0 ≤ 100 kPa

T0 = 296-380 K
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gas fill line

View 2

fan mixer

septum

piezoresistive pressure transducer

thermocouple
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Experimental Setup : Schlieren Setup

Observe changes in the density
gradient of the fluid due to
variations in the refractive index
Visualize flame :
→ very hot flame propagating

into cold unburned reactants

High speed camera :
→ 10,000 frames per second
→ 512×512 resolution

continuous
arc light
source

pinhole aperture

flat turning
mirrors

collimating
mirror

test
section

glass
windows

focusing
mirror

flat turning
mirrors

high-speed
video camera

vertical
knife edge
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Burning Speed Measurements

t = 5.0 ms

t = 9.7 ms

t = 17.1 ms

Edge detection using the Canny method
(MATLAB)
Fit ellipse to detected edge
→ use area of ellipse to find an equivalent radius

Linear extrapolation to unstretched flame speed

SL = S0
L − L ·K

S0
F ·

(
tf − t

)
= Rf −Rf,final + 2 · L · ln

(
Rf

Rf,final

)
+ C

S0
L =

S0
F
σ

and σ = ρu
ρb
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Validation of Burning Speed Measurements

T0 = 296 K and P0 = 100 kPa

Two-tailed z-test (φ = 0.8-1.4)

H0 : µ1 = µ2 and Ha : µ1 6= µ2

µ1 = present study mean
µ2 = Davis and Law mean

Null hypothesis, H0 cannot be
rejected
Difference between the two data
sets is zero (α = 0.02 confidence
level)
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Pressure Effect

T0 = 296 K

Uncertainty at 50 kPa ≈ 5%
t-test (α = 0.2 confidence level)
→ statistically significant

difference

S0
L(P ) = 129× P−0.24 (n−2)

2

n = 1.5

T0 = 353 K and φ = 0.9

Decrease in burning speed with
increase in pressure
→ increase in the upstream gas

density
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Temperature Effect

P0 = 50 kPa

From T0 = 296–380 K
→ 64% increase at φ = 0.9
→ 47% increase at φ = 1.1
→ 53% increase at φ = 1.4

Rate of burning speed increase
with temperature for fixed φ
→ 0.27 cm/s/K for φ = 0.9
→ 0.25 cm/s/K for φ = 1.1
→ 0.19 cm/s/K for φ = 1.4
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Reaction Models

JetSURF model
→ 2163 reactions
→ 348 species

Ramirez et al. model
→ 1789 reactions
→ 401 species

Blanquart (CIT) model
→ 1119 reactions
→ 155 species

Regath software
→ FORTRAN 90 package
→ thermodynamics and chemical routines

Results
→ 1D freely propagating flame
→ mixture averaged transport
→ no thermal diffusion
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Equivalence Ratio Effect

T0 = 296 K and P0 = 100 kPa T0 = 353 K and P0 = 100 kPa

JetSurf : ; Ramirez et al. : ; Blanquart :
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Experimental Conclusions

Increase in the laminar burning speed from P0 = 100 kPa to 50 kPa →
α = 0.2 confidence level
Highest rate of burning speed increase with temperature → lean mixtures
Lowest rate of burning speed increase with temperature → rich mixtures
Pressure dependency agreement with thermal flame theory of Mallard and
Le Chatelier → n = 1.5
Transition from positive to negative Markstein lengths consistent with
Kelley et al. data
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Comparison of JetSURF, Ramirez et al., and Blanquart
Models

At T0 = 296 K, the JetSURF model prediction is <12% at approximately
φ ≤ 1.30
At T0 = 353 K, the JetSURF model prediction is <10% at approximately
φ ≤ 1.45
At T0 = 296 K, the Blanquart model prediction is <12% at φ ≈ 1.30-1.60
At T0 = 353 K, the Blanquart model prediction is <10% at φ ≈ 1.45-1.70
The Ramirez et al. model systematically underestimates the laminar
burning speed



Motivation Previous Work Materials and Methods Results Conclusions

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the
California Institute of Technology and was supported by The Boeing Company
through a Strategic Research and Development Relationship Agreement
CT-BA-GTA-1.

Thank You



Motivation Previous Work Materials and Methods Results Conclusions

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the
California Institute of Technology and was supported by The Boeing Company
through a Strategic Research and Development Relationship Agreement
CT-BA-GTA-1.

Thank You


	Motivation
	Accidental Ignition

	Previous Work
	Laminar Burning Speed

	Materials and Methods
	Experimental Setup
	Burning Speed Measurements

	Results
	Experimental Results
	Modeling Results

	Conclusions
	Experiments
	Reaction Models


