Effect of Equivalence Ratio on Ignition and Flame Propagation of n-Hexane-Air Mixtures using Moving Hot Particles

Stephanie Coronel Joseph E. Shepherd

Graduate Aerospace Laboratories, California Institute of Technology

25th International Colloquium on the Dynamics of Explosions and Reactive Systems
Leeds, UK
August 2 - 7, 2015
Accidental Ignition

- Accidental ignition
 - electrostatic ignition of fuel
 - lightning strike
 - electrical faults in pumps, fuel quantity instrumentation
 - hot surface ignition

- Characterize fuel-oxidizer properties (n-hexane)
 - ignition delay time (Burcat et al. and Zhukov et al.)
 - heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - minimum ignition temperature (Boettcher)
 - minimum ignition energy (Bane)
 - laminar burning speed (Coronel)

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)
Accidental Ignition

- Accidental ignition
 - electrostatic ignition of fuel
 - lightning strike
 - electrical faults in pumps, fuel quantity instrumentation
 - hot surface ignition

- Characterize fuel-oxidizer properties (n-hexane)
 - ignition delay time (Burcat et al. and Zhukov et al.)
 - heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - minimum ignition temperature (Boettcher)
 - minimum ignition energy (Bane)
 - laminar burning speed (Coronel)

- TWA 800, NY 747-100, July 17, 1996
- China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)
Hot Particle Ignition Sources

- Lightning attaches to the top of the fastener and causes damage to the resin and fibers on the backface of the composite laminate
- The breakup of the composite is due to its poor electrical conductivity that leads to resistive heating

Ignition at edge of carbon fiber composite structure, Boeing
Hot Particle Ignition Sources

- Lightning attaches to the top of the fastener and causes damage to the resin and fibers on the backface of the composite laminate.
- The breakup of the composite is due to its poor electrical conductivity that leads to resistive heating.

Ignition at edge of carbon fiber composite structure, Boeing
Stationary Hot Particle Ignition

- D. Roth et al. Combustion Science and Technology, 186 (2014) 1606–1617

M. Beyer and D. Markus (2012)

Roth et al. (2014)
Moving Hot Particle Ignition

- S. Patterson. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 28 (1939) 1-22
- S. Patterson. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 30 (1940) 437-457

R. Silver (1937)

S. Patterson (1940)
Current study

<table>
<thead>
<tr>
<th>Material</th>
<th>d (mm)</th>
<th>V_p (m/s)</th>
<th>T_{sphere} (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alumina</td>
<td>6.0, 3.5, 1.8</td>
<td>2.3 – 2.4</td>
<td>750 – 1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixture</th>
<th>T_0 (K)</th>
<th>P_0 (kPa)</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane–air</td>
<td>300</td>
<td>100</td>
<td>0.7 – 2.2</td>
</tr>
</tbody>
</table>
Current study

<table>
<thead>
<tr>
<th>Material</th>
<th>d (mm)</th>
<th>V_p (m/s)</th>
<th>T_{sphere} (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alumina</td>
<td>6.0, 3.5, 1.8</td>
<td>2.3 – 2.4</td>
<td>750 – 1200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixture</th>
<th>T_0 (K)</th>
<th>P_0 (kPa)</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane–air</td>
<td>300</td>
<td>100</td>
<td>0.7 – 2.2</td>
</tr>
</tbody>
</table>

\[
d = 6.0 \text{ mm}
\]
Experimental Setup: Combustion Vessel

- Combustion vessel
- Reactive mixture
- N₂ line
- Pneumatic actuator sphere
- Optical shutter
- Window
- Supports
- 0.1 L
- 22 L
Experimental Setup: Particle Heating Chamber

- CW CO₂ laser: \(P_{max} = 80 \) W
- Irradiation from two sides
- Feedback control during heating
- Temperature measurements at two locations
Materials and Methods

Experimental Setup

Experimental Setup: Particle Heating Chamber

- CW CO$_2$ laser: $P_{max} = 80$ W
- Irradiation from two sides
- Feedback control during heating
- Temperature measurements at two locations
Experimental Setup: Particle Heating Chamber

- **CW CO₂ laser:**
 \[P_{\text{max}} = 80 \, \text{W} \]
- **Irradiation from two sides**
- **Feedback control during heating**
- **Temperature measurements at two locations**
Experimental Setup: Particle Heating Chamber

- CW CO₂ laser: \(P_{max} = 80 \text{ W} \)
- Irradiation from two sides
- Feedback control during heating
- Temperature measurements at two locations
Optical Diagnostics: Shearing Interferometer

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer
Optical Diagnostics: Shearing Interferometer

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer
Optical Diagnostics: Shearing Interferometer

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer
Optical Diagnostics: Shearing Interferometer

P: polarizer, L: lens, WP: Wollaston prism, A: Analyzer

Finite fringe configurations
Optical Diagnostics: Shearing Interferometer

\[\rho = \rho(x, y, z, t) \]

\[\rho \equiv \rho_0 \]

\[g \]

disturbed beam

reference beam
Optical Diagnostics: Shearing Interferometer

\[\rho = \rho(x, y, z, t) \]

\[\rho = \rho_0 \]

Materials and Methods

Optical Diagnostics

Effect of Equivalence Ratio on Ignition

S. Coronel (Caltech)
Optical Diagnostics: Shearing Interferometer

\[\rho = \rho(x, y, z, t) \]

\[\rho \neq \rho_0 \]

Effect of Equivalence Ratio on Ignition

25th ICDERS 10 / 19
Interferograms of Hot Particle Wake: $\Phi = 0.9$

\[T_{\text{sphere}} = 979 \pm 27 \text{ K} \]

\[T_{\text{sphere}} = 981 \pm 20 \text{ K} \]
Ignition Threshold: $d = 6.0 \text{ mm}$

INSENSITIVE TO COMPOSITION
Results

Experimental Results

Probability of Ignition Distribution

Alumina sphere, $d = 6$ mm

- Ignition
- No ignition

Probability of ignition

95% confidence envelope

NARROW OVERLAP REGION
Probability of Ignition Distribution

Alumina sphere, $d = 6$ mm

- Probability of ignition
- 95% confidence envelope

Temperature (K)

Probability of Ignition

10$^{-1}$
10$^{-2}$
10$^{-3}$
10$^{-4}$
10$^{-5}$
10$^{-6}$
10$^{-7}$
10$^{-8}$
10$^{-9}$
10$^{-10}$
10$^{-11}$
Ignition Location: $\Phi = 0.9$
Results

Experimental Results

Ignition Location: Comments

IGNITION OCCURS NEAR SEPARATION REGION OF SPHERE

J. MELGUIZO-GAVILANES and J. E. SHEPHERD, HOT SURFACE IGNITION AND FLOW SEPARATION #267
Flame Propagation

\[\Phi = 0.9 \quad \Phi = 1.0 \quad \Phi = 1.2 \quad \Phi = 1.7 \quad \Phi = 2.0 \]

\[0.0 \text{ ms} \quad 3.5 \text{ ms} \quad 7.0 \text{ ms} \quad 10.5 \text{ ms} \]
Conclusions
Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1
Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1

Thank You