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Accidental Ignition

Accidental ignition
→ electrostatic ignition of fuel
→ lightning strike
→ electrical faults in pumps, fuel

quantity instrumentation
→ hot surface ignition

Characterize fuel-oxidizer
properties (n-hexane)
→ ignition delay time (Burcat et

al. and Zhukov et al.)
→ heating rate on the low

temperature oxidation of
hexane by air (Boettcher et al.)

→ minimum ignition temperature
(Boettcher)

→ minimum ignition energy
(Bane)

→ laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in
Okinawa Japan (BBC News, August
20, 2007)
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Hot Surface Ignition

Lightning attaching to conductor
Current flows through composite material
Heating of material
Ejection of hot particles (Vparticle > 0)

Ignition of n-hexane-air mixtures using moving hot particles
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Experimental Setups : Stationary vs Moving Particles

Stationary particles heated via IR la-
ser : Beyer et al. (2010), Dubaniewicz
et al. (2000), Homan et al. (1981)

Moving heated particles introduced
into a flammable environment : Silver
(1937)

Experimental Setup, Beyer et al. (2010) Experimental Setup, Silver (1937)
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Results : Stationary vs Moving Particles

Stationary

<1650 K

Pentane/air ignition results, Beyer et al. (2010)

Moving

1650 K

3 vol-% pentane/air ignition, Silver (1937)

Tstationary < Tmoving

Dsphere ↑ Tignition ↓
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Natural and Forced Convection

Parallel flow past a vertical plate :
→ U∞ = 0 m/s and U∞ = 2.5 m/s
→ T∞ = 300 K

Adiabatic plate : Tw = 1200 K

0 0.5 1 1.5 2 2.5 3
200

300

400

500

600

700

800

900

1000

1100

1200

distance from wall (mm)

T 
(K

)

 

 

natural
forced

x ↑

ρcp

(
u∂T

∂x + v ∂T
∂y

)
−k ∂2T

∂y2 = −qcAe
−Ea
RT



Motivation Previous Work Materials and Methods Results Conclusions/Future Work

Natural and Forced Convection

Parallel flow past a vertical plate :
→ U∞ = 0 m/s and U∞ = 2.5 m/s
→ T∞ = 300 K

Adiabatic plate : Tw = 1200 K

0 0.5 1 1.5 2 2.5 3
200

300

400

500

600

700

800

900

1000

1100

1200

distance from wall (mm)

T 
(K

)

 

 

natural
forced

x ↑

ρcp

(
u∂T

∂x + v ∂T
∂y

)
−k ∂2T

∂y2 = −qcAe
−Ea
RT



Motivation Previous Work Materials and Methods Results Conclusions/Future Work

Natural and Forced Convection

Parallel flow past a vertical plate :
→ U∞ = 0 m/s and U∞ = 2.5 m/s
→ T∞ = 300 K

Adiabatic plate : Tw = 1200 K

0 0.5 1 1.5 2 2.5 3
200

300

400

500

600

700

800

900

1000

1100

1200

distance from wall (mm)

T 
(K

)

 

 

natural
forced

x ↑

ρcp

(
u∂T

∂x + v ∂T
∂y

)
−k ∂2T

∂y2 = −qcAe
−Ea
RT



Motivation Previous Work Materials and Methods Results Conclusions/Future Work

Natural and Forced Convection

Parallel flow past a vertical plate :
→ U∞ = 0 m/s and U∞ = 2.5 m/s
→ T∞ = 300 K

Adiabatic plate : Tw = 1200 K

0 0.5 1 1.5 2 2.5 3
200

300

400

500

600

700

800

900

1000

1100

1200

distance from wall (mm)

T 
(K

)

 

 

natural
forced

x ↑

ρcp

(
u∂T

∂x + v ∂T
∂y

)
−k ∂2T

∂y2 = −qcAe
−Ea
RT



Motivation Previous Work Materials and Methods Results Conclusions/Future Work

Natural and Forced Convection

Parallel flow past a vertical plate :
→ U∞ = 0 m/s and U∞ = 2.5 m/s
→ T∞ = 300 K

Adiabatic plate : Tw = 1200 K

0 0.5 1 1.5 2 2.5 3
200

300

400

500

600

700

800

900

1000

1100

1200

distance from wall (mm)

T 
(K

)

 

 

natural
forced

x ↑

ρcp

(
u∂T

∂x + v ∂T
∂y

)
−k ∂2T

∂y2 = −qcAe
−Ea
RT



Motivation Previous Work Materials and Methods Results Conclusions/Future Work

Summary

1. Motivation

2. Previous Work

3. Materials and Methods
Experimental Setup

4. Results

5. Conclusions/Future Work



Motivation Previous Work Materials and Methods Results Conclusions/Future Work

Experimental Setup : Combustion Vessel

View 1

11.7 cm diameter windows

pressure manometer

vacuum

gas fill line

View 2

fan mixer

septum

piezoresistive pressure transducer

thermocouple
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Experimental Setup : Schlieren Setup

Observe changes in the density
gradient of the fluid due to
variations in the refractive index
Visualize flame :
→ very hot flame propagating

into cold unburned reactants

High speed camera :
→ 10,000 frames per second
→ 512×512 resolution

continuous
arc light
source

pinhole aperture

flat turning
mirrors

collimating
mirror

test
section

glass
windows

focusing
mirror

flat turning
mirrors

high-speed
video camera

vertical
knife edge
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Experimental Setup : High Current Particle Heater

air cylinder

air cylinder

resistor

12 V

12 VDC

sphere

opto-isolated
relay

+4 VDC
from delay generator

air cylinder air cylinder

tube

sphere

window

tungsten electrodes

to pyrometer

Heating circuit schematic Particle heater chamber (top) and
combustion vessel (bottom)
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Results : High Current Heating in Air

Heating in air, R = 17 mΩ, d = 4 mm, heating time ≈ 1 sec

t = 0 sec t = 0.22 sec t = 0.79 sec t = 1 sec

Titanium (Ti-6Al-4V) → Tmax ≈ 1200 K

t = 0 sec t = 0.04 sec t = 0.46 sec t = 1 sec

Titanium (Ti-6Al-4V) → Tmax ≈ 1300 K
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Results : High Current Heating in Air

Heating in air, R = 13 mΩ, d = 4 mm
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n-Hexane–air : P0 = 100 kPa, T0 = 300 K, Φ = 0.9
d = 4 mm, material : titanium, V ≈ 2.3 m/s
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Results : Ignition Test

Tsurface = 1199 + 42 K/-10 K

t = 1 ms t = 5.6 ms t = 7.6 ms t = 10.7 ms

t = 15.4 ms t = 21.0 ms t = 30.1 ms

t = 48.2 ms
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Results : Flame Geometry

n-Hexane–Air, Φ = 0.9 n-Hexane–O2–40% N2, Φ = 0.9
P = 100 kPa P = 50 kPa

V 0
S = 2.6 m/s V 0

S = 23 m/s
VP ≈ 2.3 m/s VP ≈ 2.3 m/s
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Results : Ignition Tests

Probability distribution : P0 = 100 kPa, T0 = 300 K and Φ = 0.9
# of tests : 26

overlap region

95% confidence
intervals

stationary glow
plug ignition
(h = 6.9 mm,
d = 3.1 mm)

Boettcher thesis (2012)
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Simulation Setup

Grid
→ Axisymmetric
→ Locally refined around stationary

hot particle
→ 192x128 mesh points

Boundary conditions
→ Constant particle temperature
→ Wall temperature : 300 K
→ Inert surfaces
→ Neumann boundary condition for

species

Initial conditions
→ P0 = 100 kPa, T0 = 300 K and

Φ = 0.9
→ Flow N2 at t = 0-200 ms and

n-heptane1–air at t > 200 ms
1 Blanquart G., Pepiot-Desjardins P., and Pitsch
H. (2009). Combustion and Flame. 156 : 588-
607.

192 points

128 points

3d→ 64 points

5d→ 128 points

W
al
l W

all

Outlet

Inlet
Low Mach number Navier-Stokes
equations and detailed chemistry
calculations
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Results : Simulations (N2 Hot Wake)

N2 velocity and thermal boundary layers, stabilized at t > 100 ms,
Tsurface = 1500 K
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Results : Simulations (N2 Hot Wake)

Tsurface = 1500 K



n-Heptane–air : P0 = 100 kPa, T0 = 300 K, Φ = 0.9
d = 4 mm, V = 2.5 m/s, Tsurface = 1450 K
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Results : Ignition Simulations

Tsurface = 1450 K, fuel mass fraction and temperature
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Results : Ignition Simulations

Tsurface = 1450 K, N2 mass fraction and OH*
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Results : Experiments and Simulations

Ignition delay time

Ignition delay time ≈ 5 ms
Increase in ignition delay time
while approaching minimum
ignition temperature

Experiment : Tsurface = 1199 K,
Simulation : Tsurface = 1450 K

t = 7.6 ms

t = 10.7 ms

t = 15.4 ms
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Conclusions/Future Work

Conclusions
Ignition of n-hexane–air mixtures using moving heated particles (P0 = 100
kPa, T0 = 300 K, Φ = 0.9) with VP ≈ 2.3 m/s
→ 50% probability of ignition with Tsurface = 1170 K using 4 mm diameter

titanium spheres
→ Interaction of flame and sphere for mixtures with flame speeds comparable

to the particle velocity
Qualitative agreement between experiments and simulation
→ Nitrogen recirculation region that leads to a particular flame propagation

behaviour
→ Ignition close to sphere surface near flow separation region

Comparable ignition delay times between experiments and simulations
→ 35-60% difference at Tsurface > 1400 K

Future Work
New particle heating method : CO2 laser
→ Repeatable surface temperatures
→ Use of metallic or non-metallic materials
→ Easy switch to larger or smaller particles
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