Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	000000000000000000000000000000000000000	

Ignition of *n*-Hexane-Air Mixtures by Moving Hot Spheres

S. Coronel S. Menon R. Mével G. Blanquart J. E. Shepherd

Graduate Aeronatical Laboratories, California Institute of Technology

24th International Colloquium on the Dynamics of Explosions and Reactive Systems

National Central University Taipei, Taiwan July 28 - August 2, 2013

イロト 不得 とうき とうとう

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	000000000000	0
Summary				

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- 1. Motivation
 - Accidental Ignition
 - Hot Surface Ignition
- 2. Previous Work
- 3. Materials and Methods
- 4. Results
- 5. Conclusions/Future Work

revious Work
00

Results Conclusions/Future Work

Accidental Ignition

Accidental ignition

- $\rightarrow\,$ electrostatic ignition of fuel
- \rightarrow lightning strike
- \rightarrow electrical faults in pumps, fuel quantity instrumentation
- \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous	Work
•0	000	

Results Conclusions/Future Work

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - → electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow\,$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Motivation	Previous	Wor
•0	000	

Results Conclusions/Future Work

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - $ightarrow \,$ lightning strike
 - → electrical faults in pumps, fuel quantity instrumentation
 - $\rightarrow\,$ hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

evious Work	Materials a
00	0000

Results Conclusions/Future Work

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials
•0	000	0000

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

and Methods

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods
● ○	000	0000

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - → ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods	F
•0	000	0000	(

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - $\rightarrow\,$ ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods	Resu
● ○	000	0000	000

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - → minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - ightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods	Re
•0	000	0000	00

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - \rightarrow minimum ignition temperature (Boettcher)
 - → minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods	R
•0	000	0000	0

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - \rightarrow minimum ignition temperature (Boettcher)
 - \rightarrow minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods	Res
● ○	000	0000	000

Accidental Ignition

- Accidental ignition
 - $\rightarrow~$ electrostatic ignition of fuel
 - \rightarrow lightning strike
 - $\rightarrow\,$ electrical faults in pumps, fuel quantity instrumentation
 - \rightarrow hot surface ignition
- Characterize fuel-oxidizer properties (n-hexane)
 - \rightarrow ignition delay time (Burcat et al. and Zhukov et al.)
 - → heating rate on the low temperature oxidation of hexane by air (Boettcher et al.)
 - \rightarrow minimum ignition temperature (Boettcher)
 - \rightarrow minimum ignition energy (Bane)
 - \rightarrow laminar burning speed

TWA 800, NY 747-100, July 17, 1996

China Air Flight 120 caught fire in Okinawa Japan (BBC News, August 20, 2007)

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
0	000	0000	00000000	0000
Hot Surfa	ace Ignition			

イロト イロト イヨト イヨト

э

Sac

- Lightning attaching to conductor

- Current flows through composite material
- Heating of material
- Ejection of hot particles (V_{particle} > 0)

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
0•	000	0000	00000000000	
Hot Surfa	ce Ignition			

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- Lightning attaching to conductor
- Current flows through composite material
- Heating of material
- Ejection of hot particles $(V_{particle} > 0)$

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
0.	000	0000	000000000000	0
Hot Surfa	ce Ignition			

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

- Lightning attaching to conductor
- Current flows through composite material
- Heating of material
- Ejection of hot particles $(V_{particle} > 0)$

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
0.	000	0000	000000000000	0
Hot Surfa	ce Ignition			

500

- Lightning attaching to conductor
- Current flows through composite material
- Heating of material
- Ejection of hot particles ($V_{particle} > 0$)

Motivation Previous Work		Materials and Methods	Results	Conclusions/Future Work
0.	000	0000	000000000	0000
Hot Surfa	ace Ignition			

- Current flows through composite material
- Heating of material
- Ejection of hot particles $(V_{particle} > 0)$

Ignition of *n*-hexane-air mixtures using moving hot particles

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	000000000000	0
Summary				

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

1. Motivation

2. Previous Work

- Experimental Setups
- Results

3. Materials and Methods

4. Results

5. Conclusions/Future Work

Stationary particles heated via IR laser : Beyer et al. (2010), Dubaniewicz et al. (2000), Homan et al. (1981) Moving heated particles introduced into a flammable environment : Silver (1937)

Experimental Setup, Beyer et al. (2010)

Experimental Setup, Silver (1937)

Pentane/air ignition results, Beyer et al. (2010) 3 vol-% pentane/air ignition, Silver (1937)

▲ロト ▲圖ト ▲ヨト ▲ヨト 三臣 - のへの

1200

2

3

Sphere diameter (mm)

イロト イポト イヨト イヨト

5

6

э

Sac

Pentane/air ignition results, Beyer et al. (2010) 3 vol-% pentane/air ignition, Silver (1937)

5.5

1100

1.5

2.5

3.5

vol-% pentane

4.5

Pentane/air ignition results, Beyer et al. (2010) 3 vol-% pentane/air ignition, Silver (1937)

・ロト 《母 》 《言 》 《言 》 《日 》

Pentane/air ignition results, Beyer et al. (2010) 3 vol-% pentane/air ignition, Silver (1937)

 $T_{stationary} < T_{moving}$ $D_{sphere} \uparrow T_{ignition} \downarrow$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

- Parallel flow past a vertical plate :
 - $ightarrow U_{\infty}$ = 0 m/s and U_{∞} = 2.5 m/s $ightarrow T_{\infty}$ = 300 K
- Adiabatic plate : $T_w = 1200 \text{ K}$

イロト イロト イヨト イヨト

э

- Parallel flow past a vertical plate :
 - $ightarrow U_{\infty}$ = 0 m/s and U_{∞} = 2.5 m/s ightarrow T_{\infty} = 300 K
- Adiabatic plate : $T_w = 1200 \text{ K}$

イロト 不得下 不良下 不良下

э

- Parallel flow past a vertical plate :
 - $ightarrow U_{\infty}$ = 0 m/s and U_{∞} = 2.5 m/s ightarrow T_{\infty} = 300 K
- Adiabatic plate : $T_w = 1200 \text{ K}$

イロト 不得下 不良下 不良下

Э

- Parallel flow past a vertical plate :
 - $ightarrow U_{\infty}$ = 0 m/s and U_{∞} = 2.5 m/s ightarrow T_{\infty} = 300 K
- Adiabatic plate : $T_w = 1200 \text{ K}$

- - Parallel flow past a vertical plate : $\rightarrow U_{\infty} = 0 \text{ m/s} \text{ and } U_{\infty} = 2.5 \text{ m/s}$ $\rightarrow T_{\infty} = 300 \text{ K}$
 - Adiabatic plate : $T_w = 1200 \text{ K}$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	0000000000000	0
Summary				

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

1. Motivation

2. Previous Work

3. Materials and Methods

Experimental Setup

4. Results

5. Conclusions/Future Work

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	●000	0000000000	00
Evenering	antal Catur	Combustion	Vacal	

Experimental Setup : Combustion Vessel

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ □ ♪ ヘ ○ ○

 Materials and Methods
 Results
 Conclusions/Future Work

 000
 000
 000
 000000000000

 Experimental Setup : Combustion Vessel

11.7 cm diameter windows

<□▶ <□▶ < □▶ < □▶ < □▶ = □ ○ ○ ○ ○

Experimental Setup : Combustion Vessel

11.7 cm diameter windows

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

pressure manometer

Experimental Setup : Combustion Vessel

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

pressure manometer

Experimental Setup : Combustion Vessel

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Motivation **Previous** Work **Materials and Methods** Results **Conclusions/Future Work** 0000

Experimental Setup : Combustion Vessel

Motivation **Previous** Work **Materials and Methods** Results **Conclusions/Future Work** 0000

Experimental Setup : Combustion Vessel

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - → very hot flame propagating into cold unburned reactants
- High speed camera :
 - ightarrow 10,000 frames per seconc ightarrow 512imes512 resolution

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - \rightarrow very hot flame propagating into cold unburned reactants
- High speed camera :
 - ightarrow 10,000 frames per second ightarrow 512imes512 resolution

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - $\rightarrow\,$ very hot flame propagating into cold unburned reactants
- High speed camera :
 - ightarrow 10,000 frames per second ightarrow 512×512 resolution

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - $\rightarrow\,$ very hot flame propagating into cold unburned reactants
- High speed camera :
 - ightarrow 10,000 frames per second ightarrow 512imes512 resolution

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - $\rightarrow\,$ very hot flame propagating into cold unburned reactants
- High speed camera :
 - $\rightarrow~$ 10,000 frames per second
 - \rightarrow 512×512 resolution

- Observe changes in the density gradient of the fluid due to variations in the refractive index
- Visualize flame :
 - $\rightarrow\,$ very hot flame propagating into cold unburned reactants
- High speed camera :
 - ightarrow 10,000 frames per second
 - $\rightarrow~512{\times}512$ resolution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三直 - 釣�?

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	000●	000000000000	0
Experime	ntal Setup :	High Current Pai	rticle Hea	ter

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	000000000000000000000000000000000000000	0
Summary				

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- 1. Motivation
- 2. Previous Work
- 3. Materials and Methods
- 4. Results
 - Heating in Air
 - Ignition Results
 - Simulation Results
 - Comparison
- 5. Conclusions/Future Work

MotivationPrevious Work00000

Materials and Methods

Results : High Current Heating in Air

Heating in air, R= 17 m $\Omega,\,d=$ 4 mm, heating time \approx 1 sec

Titanium (Ti-6Al-4V) $\rightarrow T_{max} \approx 1200$ K

Titanium (Ti-6Al-4V) $\rightarrow T_{max} \approx 1300$ K

MotivationPrevious Work00000

Materials and Methods

Results Conclusions/Future Work

Results : High Current Heating in Air

Heating in air, R= 13 m $\Omega,\,d=$ 4 mm

Material	$T_{melting}$ (K)
Copper	1350
Carbon steel, alloy steel, 302 SS	1700-1800
Titanium	1950

イロト イロト イヨト イヨト

æ

990

n-Hexane–air : $P_0 = 100$ kPa, $T_0 = 300$ K, $\Phi = 0.9$ d = 4 mm, material : titanium, $V \approx 2.3$ m/s

 $T_{surface} = 1199 + 42$ K/-10 K

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Motivatio	n	Previous W	/ork	Materials and	Methods	Results	Conclusions/Future \
00		000		0000		00000000000000000	D C C C C C C C C C C C C C C C C C C C
	1		~	1.00			

Results : Flame Geometry

n-Hexane–Air, $\Phi = 0.9$ P = 100 kPa

 $V_S^0 =$ 2.6 m/s $V_P \approx$ 2.3 m/s

n-Hexane–O₂–40% N₂, $\Phi = 0.9$ P = 50 kPa

 $V_S^0 =$ 23 m/s $V_P \approx$ 2.3 m/s

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロト ▲圖 ▶ ▲ ヨト ▲ ヨト ― ヨー つくぐ

▲ロト ▲圖 ▶ ▲ ヨト ▲ ヨト ― ヨー つくぐ

▲ロト ▲圖 ▶ ▲ ヨト ▲ ヨト ― ヨー つくぐ

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	000000000000	0
C1 1 11	C I			

Simulation Setup

- Grid
 - \rightarrow Axisymmetric
 - $\rightarrow\,$ Locally refined around stationary hot particle
 - \rightarrow 192x128 mesh points
- Boundary conditions
 - $\rightarrow~$ Constant particle temperature
 - \rightarrow Wall temperature : 300 K
 - \rightarrow Inert surfaces
 - → Neumann boundary condition for species
- Initial conditions
 - $ightarrow P_0 =$ 100 kPa, $T_0 =$ 300 K and $\Phi =$ 0.9
 - \rightarrow Flow N₂ at t = 0-200 ms and *n*-heptane¹-air at t > 200 ms

 1 Blanquart G., Pepiot-Desjardins P., and Pitsch H. (2009). Combustion and Flame. 156 : 588-607.

 Motivation
 Previous Work
 Materials and Methods
 Results
 Conclusions/Future Work

 000
 000
 0000
 00000
 00000

 Results : Simulations (N2 Hot Wake)
 000000
 00000

 ${\rm N}_2$ velocity and thermal boundary layers, stabilized at t> 100 ms, $T_{surface}=$ 1500 K

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

 $T_{surface} = 1500 \ {\rm K}$

ヘロト A倒ト AEト AEト

æ

990

n-Heptane–air : $P_0 = 100 \text{ kPa}$, $T_0 = 300 \text{ K}$, $\Phi = 0.9 d = 4 \text{ mm}$, V = 2.5 m/s, $T_{surface} = 1450 \text{ K}$

◆□▶ <□▶ < => < => < □▶ < □▶</p>

Motivation	Previous Work	Materials and Methods	Results Conclusions/Future Work
00	000	0000	000000000000000
		1	

Results : Ignition Simulations

$T_{surface} =$ 1450 K, fuel mass fraction and temperature

イロト イロト イヨト イヨト

₹ 9Q@

Motivation	Previous Work	Materials and Methods	Results
00	000	0000	00000000

conclusions/Future Work

Results : Ignition Simulations

$T_{surface} =$ 1450 K, N_2 mass fraction and OH*

Motivation	Previous Work	Materials and Methods	Results Conclusions/Future Work	
00	000	0000	0000000000	
	- · ·			

Results : Experiments and Simulations

Ignition delay time

- Ignition delay time pprox 5 ms
- Increase in ignition delay time while approaching minimum ignition temperature

Experiment : $T_{surface} = 1199$ K, Simulation : $T_{surface} = 1450$ K

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ り へ ()

Motivation	Previous Work	Materials and Methods	Results Conclusions/Future Work	
00	000	0000	0000000000	
	- · ·			

Results : Experiments and Simulations

Ignition delay time

- Ignition delay time pprox 5 ms
- Increase in ignition delay time while approaching minimum ignition temperature

Experiment : $T_{surface} = 1199$ K, Simulation : $T_{surface} = 1450$ K

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Motivation	Previous Work	Materials and Methods	Results Conclusions/Future Work	
00	000	0000	00000000000	
Summary				

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- 1. Motivation
- 2. Previous Work
- 3. Materials and Methods
- 4. Results
- 5. Conclusions/Future Work
| Motivation | Previous Work | Materials and Methods | Results | Conclusions/Future Work | | | |
|-------------------------|---------------|-----------------------|--------------|-------------------------|--|--|--|
| 00 | 000 | 0000 | 000000000000 | 0 | | | |
| Conclusions/Future Work | | | | | | | |

Conclusions

- Ignition of *n*-hexane-air mixtures using moving heated particles ($P_0 = 100$ kPa, $T_0 = 300$ K, $\Phi = 0.9$) with $V_P \approx 2.3$ m/s
 - $\rightarrow \,$ 50% probability of ignition with $T_{surface} =$ 1170 K using 4 mm diameter titanium spheres
 - $\rightarrow\,$ Interaction of flame and sphere for mixtures with flame speeds comparable to the particle velocity
- Qualitative agreement between experiments and simulation
 - $\rightarrow\,$ Nitrogen recirculation region that leads to a particular flame propagation behaviour

- $\rightarrow\,$ Ignition close to sphere surface near flow separation region
- Comparable ignition delay times between experiments and simulations
 - ightarrow 35-60% difference at $T_{surface}$ > 1400 K

Future Work

- New particle heating method : CO₂ laser
 - \rightarrow Repeatable surface temperatures
 - ightarrow Use of metallic or non-metallic materials
 - $\rightarrow~$ Easy switch to larger or smaller particles

Motivation	Previous Work	Materials and Methods	Results	Conclusions/Future Work
00	000	0000	00000000000000000	0
Acknowled	gements			

The present work was carried out in the Explosion Dynamics Laboratory of the California Institute of Technology and was supported by The Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

(日)、(型)、(E)、(E)、(E)、(Q)()

Thank You

David Marxer photography

▲□▶ ▲靣